Math, asked by Daneil, 1 year ago

I'll give brainy to correct

Attachments:

Answers

Answered by Mankuthemonkey01
2
Hey mate
By using the identity
(a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab
so we have
x +  \frac{1}{x}  = 6
squaring both sides

(x +  \frac{1}{x} ) {}^{2}  = (6) {}^{2}  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \times x \times  \frac{1}{x}  = 36
cancelling x in multiplication we have
 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 36 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 36 - 2 \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 34
repeating the process we have
( {x}^{2}  +  \frac{1}{ {x}^{2} } ) {}^{2}  = (34) {}^{2}  \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2  \times  {x}^{2} \times  \frac{1}{ {x}^{2} }  = 1156 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  + 2 = 1156 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1156 - 2 \\  {x}^{4}  +  \frac{1}{ {x}^{4} }  = 1154
1154 is your answer
Hope it helps dear friend ☺️✌️✌️

Daneil: tq
Mankuthemonkey01: welcome
Daneil: brainly will be given
Mankuthemonkey01: Your wish
Mankuthemonkey01: Thanks
Daneil: hi
Similar questions