Math, asked by Mohnish01, 1 day ago

I'll Mark you as a brainliest pls answer this question

Attachments:

Answers

Answered by talpadadilip417
1

   \small\colorbox{lightyellow} {\text{ \bf♕ Brainliest answer }}

 \rule{300pt}{0.1pt}

\mathbb\red{ \tiny A \scriptsize \: N \small \:S \large \: W \Large \:E \huge \: R}

 \rule{300pt}{0.1pt}

By heron's formula,

 \rm \text{Area of triangle =} \sqrt{s(s-a)(s-b)(s-c)}

Where, a, b, c are sides of triangle and

\rm s=\dfrac{a+b+c}{2}

Here, a=5 cm , b=12 cm & c=13 cm.

\[ \begin{array}{l}  \\  \displaystyle\rm \therefore s=\frac{5+12+13}{2}=\frac{30}{2}=15 cm \\\\  \displaystyle\rm \therefore \text { Area }=  \sqrt{15(15-5)(15-12)(15-13)} \\ \\  \displaystyle\rm\text { Area }=\sqrt{15 \times 10 \times 3 \times 2} \\ \\  \displaystyle\rm\text { Area }=30 \:  cm ^{2} \end{array} \]

Now, we have, Area of triangle

 \text{\( =\dfrac{1}{2} \times \) Base \( \times \) Height}

 \[ \begin{array}{l} \\ \displaystyle\rm  30=\frac{1}{2} \times 13 \times A D \\\\ \displaystyle\rm A D=\frac{30 \times 2}{13}=\frac{60}{13}  \\  \\   \boxed{\color{orange} \rm A D=4.62 \:  \: cm}\end{array} \]

Hence, Area of \rm \triangle A B C is 30 cm² & AD =4.62 cm.

Similar questions