Math, asked by adityaprakash18913, 7 months ago

I'm sure nobody can solve this trigonometric question​

Attachments:

Answers

Answered by Dynamicarmies
8

L.H.S = √(1 - cos Ф)/√(1 + cos Ф)

rationalise by √(1 - cos Ф)

√(1 - cos Ф)² / √(1 - cos² Ф)

(1 - cos Ф) / √(sin² Ф)                          (sin² α + cos² α = 1 )

(1 - cos Ф) / sin Ф

1 / sin Ф - cos Ф / sin Ф

cosec Ф - cot Ф    

hence , L.H.S = R.H.S          

Answered by anindyaadhikari13
4

\bf\large\underline\blue{Question:-}

Prove that  \sqrt{ \frac{1  -   \cos Q}{1 +  \cos Q} }  =  \cosec Q -  \cot Q

\bf\large\underline\blue{Solution:-}

\bf\underline\blue{Taking\:LHS:-}

 \sqrt{ \frac{1 -  \cos Q}{1 +  \cos Q} }

 =  \sqrt{ \frac{1 -  \cos Q}{1 +  \cos Q}  \times  \frac{1 -  \cos Q}{1 -  \cos Q} }

 =  \sqrt{ \frac{ {(1 -  \cos Q)}^{2} }{1 -  \cos^{2}Q } }

 =  \sqrt{ \frac{ {(1 -  \cos Q)}^{2} }{ \sin^{2} Q} }

 =  \frac{1 -  \cos Q}{ \sin Q}

 =  \frac{1}{ \sin Q}  -  \frac{ \cos Q}{ \sin Q}

 =  \cosec Q -  \cot Q

\bf\underline\blue{Taking\:RHS:-}

 =  \cosec Q -  \cot Q

\bf\large\underline\blue{Therefore,}

\bf\underline\blue{LHS=RHS}

\bf\large\underline\blue{Hence\:Proved.}

Similar questions