I mark u in brilient list
Plz give me a answer of Question number 2
Attachments:
Answers
Answered by
1
Please check the attached
Attachments:
Answered by
0
Here is ur answer
x3+y3+z3−3xyz=
x3+y3+3x2y+3xy2+z3−3xyz−3x2y−3xy2
=(x+y)3+z3−3xy(x+y+z)
=(x+y+z)((x+y)2+
z2−(x+y)z)−3xy(x+y+z)
=(x+y+z)(x2+2xy+y2+z2−xy−3
x
y
)
=
(
x
+
y
+
z
)
(
x
2
+
y
2
+
z
2
−
x
y
−
y
z
−
z
x
)
x3+y3+z3−3xyz=
x3+y3+3x2y+3xy2+z3−3xyz−3x2y−3xy2
=(x+y)3+z3−3xy(x+y+z)
=(x+y+z)((x+y)2+
z2−(x+y)z)−3xy(x+y+z)
=(x+y+z)(x2+2xy+y2+z2−xy−3
x
y
)
=
(
x
+
y
+
z
)
(
x
2
+
y
2
+
z
2
−
x
y
−
y
z
−
z
x
)
Similar questions