Math, asked by tanvi0v, 9 months ago

I need a hand written answer.
plz explain it step by step.

Attachments:

Answers

Answered by pramodyadav04172
0

Answer:this answer is0 because many reason

Step-by-step explanation:

There are 200 type to make

Answered by tahseen619
4

0

Step-by-step explanation:

To Solve:

\dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3}} +  \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3}} -  \dfrac{4 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }

Solution:

1) Rationalize in split way or combine way.

I will solve it is split way.

2) Right the Rationalize terms and as follow the question.

1st term

\frac{ \sqrt{6} }{ \sqrt{2} +  \sqrt{3}}  \\  \\  =  \frac{ \sqrt{6}( \sqrt{2}  -  \sqrt{3})}{( \sqrt{2} +  \sqrt{3})( \sqrt{2} -  \sqrt{3})}  \\  \\ =  \frac{ \sqrt{6}. \sqrt{2} -  \sqrt{6}. \sqrt{3} }{ {( \sqrt{2})}^{2} -  {( \sqrt{3})}^{2}  } \:  \:  \because (x + y)(x - y) =  {x}^{2}  -  {y}^{2} \\  \\  =  \frac{ \sqrt{12}- \sqrt{18} }{2 - 3} \\  \\  =  \frac{2 \sqrt{3} - 3 \sqrt{2}  }{ - 1}  \\  \\  = - 2 \sqrt{3}  + 3 \sqrt{2}

2nd term

\frac{3 \sqrt{2}}{ \sqrt{6} +  \sqrt{3}} \\  \\ =   \frac{3 \sqrt{2}( \sqrt{6} -  \sqrt{3})}{( \sqrt{6}  +  \sqrt{3})( \sqrt{6} -  \sqrt{3})} \\  \\  =  \frac{3( \sqrt{2}. \sqrt{6} -  \sqrt{2}. \sqrt{3})}{ {( \sqrt{6})}^{2} -  {( \sqrt{3})}^{2} }  \\  \\  =  \frac{3( \sqrt{12} -  \sqrt{6})  }{6 - 3} \\  \\  =  \frac{3(2 \sqrt{3} -  \sqrt{6})}{3} \\  \\  = 2 \sqrt{3} -  \sqrt{6}

3rd term

 \frac{4 \sqrt{3}}{ \sqrt{6} +  \sqrt{2}} \\  \\ =   \frac{4 \sqrt{3}( \sqrt{6} -  \sqrt{2})}{( \sqrt{6}  +  \sqrt{2})( \sqrt{6} -  \sqrt{2})} \\  \\  =  \frac{4( \sqrt{3}. \sqrt{6} -  \sqrt{3}. \sqrt{2})}{ {( \sqrt{6})}^{2} -  {( \sqrt{2})}^{2} }  \\  \\  =  \frac{4( \sqrt{18} -  \sqrt{6})  }{6 - 2} \\  \\  =  \frac{4(3 \sqrt{2} -  \sqrt{6})}{4} \\  \\  = 3\sqrt{2} -  \sqrt{6}

Now, In question...

\dfrac{ \sqrt{6} }{ \sqrt{2}  +  \sqrt{3}} +  \dfrac{3 \sqrt{2} }{ \sqrt{6}  +  \sqrt{3}} -  \dfrac{4 \sqrt{3} }{ \sqrt{6} +  \sqrt{2}  }  \\  \\  = ( - 2 \sqrt{3} + 3 \sqrt{2})   +(  2 \sqrt{3} -  \sqrt{6}) - (3 \sqrt{2}   -  \sqrt{6} ) \\  \\  =  - 2 \sqrt{3} + 3 \sqrt{2} + 2 \sqrt{3}  -  \sqrt{6}   - 3 \sqrt{2} +  \sqrt{6}  \\  \\  =  - \cancel{2 \sqrt{3}} + \cancel{3 \sqrt{2}} +\cancel{2 \sqrt{3}} -   \cancel{\sqrt{6}}   -\cancel{ 3 \sqrt{2}} +  \cancel{\sqrt{6}} \\  \\  = 0

Therefore, the required answer is 0.

Similar questions