Math, asked by aashishr077, 1 month ago

I need all answers of my third question ​

Attachments:

Answers

Answered by ItzBrainlyLords
4

 \large  \star \: \mathtt{given : } \\

Scores - 58 , 72 , 89 , 105 , 95

 \large \frak{formula : } \\  \\   \mapsto  \underline{\boxed{ \sf \: avarage =  \frac{sum \:  \: of \:  \: observations}{no. \:  \: of \:  \: observations} }} \\  \\  \\   \tt \implies \: avarage =  \frac{58 + 72 +89 + 105 +95  }{5}  \\  \\  \\  \tt \implies \: avarage =  \frac{419}{5}  \\ \\   \\  \large \underline{ \underline{  \star \:  \: \sf \: avarage = 83.8}} \\  \\

☞︎︎︎ Median

  • Ascending Order :

58 , 72 , 89 , 95 , 105

  • Number of observation (n) = 5

 \\ \large \star \:  \tt \: formula :  \\  \\  \rm \: median :  \\ \\  \sf \leadsto \underline{ \boxed{ \sf \:  =  \frac{{  \left(  \dfrac{n}{2}   \right) }^{th}observation + {  \left(  \dfrac{n + 1}{2}   \right) }^{th}observation }{2}   }} \\  \\

 \sf \implies { { \sf \: \dfrac{{  \left(  \dfrac{10}{2}   \right) }^{th}observation + {  \left(  \dfrac{10+ 1}{2}   \right) }^{th}observation }{2}   }} \\  \\  \\  \sf \implies { { \sf \: \dfrac{{  \left(  5  \right) }^{th}observation + {  \left(  5 + 1 \right) }^{th}observation }{2}   }} \\  \\  \\   \sf \implies { { \sf \: \dfrac{{  \left(  5  \right) }^{th}observation + {  \left(  6 \right) }^{th}observation }{2}   }}

  • There is no 6th observation..

 \\  \implies \sf \: median =  \frac{6}{2}  \:  \: observation \\  \\   \ \sf{ \: median = 3 \:  \: obsrvation} \\  \\ \large \boxed{ \sf \: median = 89} \\

Similarly :

2) Observations = 12 , 42 , 15 , 36 , 50 , 33 , 25

No. of observation (n) = 7

( odd value )

  • Ascending Order

12 , 15 , 25 , 33 , 36 , 42 , 50

 \large \mathfrak{formula : } \\  \\  \sf \leadsto \: {\boxed{\boxed{ \sf \frac{(n + 1 {)}^{th}  \: observation}{2} }}} \\  \\

 \sf \implies median =  \dfrac{7 + 1}{2} \:  \: observation \\  \\  \sf median =  \frac{8}{2}   \:  \: observation \\  \\  \sf \: median = 4th \:  \: observation \\ \\   \\   \large\underline{ \underline{ \sf \: median =33 }} \\  \\

3) Mode

Observation = 14 , 25 , 18 , 14 , 36 , 13 , 14

We see ,

  \\  \sf \: 14 \:  \: occurs \:  \: most \:  \: frequently \\  \\

  • Mode = 14

Similar questions