Math, asked by sunkarishivakumar1, 10 months ago

i need answer this one ​

Attachments:

Answers

Answered by Sharad001
37

Question :-

 \int \:  \frac{ \sin( { \tan}^{ - 1} x) }{1 +  {x}^{2} } dx =  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:}. \\

Answer :-

\boxed{  \int   \frac{ \sin( { \tan}^{ - 1} x) }{1 +  {x}^{2} } dx = -  \cos( { \tan}^{ - 1}x )+\: c} \:  \\  \\  \sf \: option \: (b) \: is \: correct

Solution :-

We have ,

 \to \: \int \:  \frac{ \sin( { \tan}^{ - 1} x) }{1 +  {x}^{2} } dx \:  \\  \\ { let \: }  \:  , \: \: \:  { \tan}^{ - 1} x = t  \:  \:  \:  ..... eq.(1)\\  \\ \sf \red{ differentiate \: with }\: respect \: to \: x \\  \\  \to  \frac{d}{dx}  { \tan}^{ - 1} x =  \frac{dt}{dx}  \\  \\ \:  \:  \:  \boxed{  \because \:  \frac{d}{dx}   { \tan}^{ - 1} x =  \frac{1}{1 +  {x}^{2} } } \\  \therefore \:  \\  \\  \to \:  \frac{1}{1 +  {x}^{2} }  =  \frac{dx}{dt}  \\  \\  \to \:  \frac{1}{1 +  {x}^{2} }  \: dx = dt \: .....\: eq.(2) \\  \\ hence \:  , \sf it \: will \: be \:  \\  \\  \to \:  \int \:  \sin( { \tan}^{ - 1}x )  \:  \frac{1}{1 +  {x}^{2} }   \: dx \\  \\ \sf from \: eq.(2) \\  \:  \: \\  \to \:  \int \sin(t) \: dt \\  \\  \to \:  -  \cos(t) + c \\  \\ \sf now \: from \: eq.(1) \\  \\   \to  \boxed{ -  \cos( { \tan}^{ - 1}x  ) \: + c } \\  \\  \to \boxed{  \int   \frac{ \sin( { \tan}^{ - 1} x) }{1 +  {x}^{2} } dx = -  \cos( { \tan}^{ - 1}x )+ \: c}

Option (b) is correct

Similar questions