Math, asked by cheeyaznashwa, 4 days ago

i need full explanation

Attachments:

Answers

Answered by ArunSivaPrakash
1

Given: I =  \int\ {\frac{(x+3)^{3} }{3} } \, dx

To FInd: value of I

Solution: I= \int\ {\frac{(x+3)^{3} }{3} } \, dx

    Let   x+3 = y   --------(1)

      on differentiating equation (1) wrt x

              1+0=\frac{dy}{dx}⇒  dy=dx ------------(2)

on putting value of y from equation (1) in I

                I=   \int\ {\frac{y^{3} }{3} } \, dy

using formula, \int\ {x^{n} } \, dx = \frac{x^{n+1} }{n+1}

             ⇒I=\frac{1}{3} \int\ {y^{3} } \, dy  

             ⇒ I=    \frac{1}{3} \frac{y^{3+1} }{(3+1)}

       I=\frac{y^{4} }{12} = \frac{(x+3)^{4} }{12}      

               

Similar questions