Math, asked by abhilasha252221, 5 months ago

I need full solution please give the right answer ​

Attachments:

Answers

Answered by Anonymous
3

GIVEN

\large{\sf{27))\:({2}^{0}+{3}^{-1})\times{3}^{2}}}

SOLUTION

\large\implies{\sf{({2}^{0}+{3}^{-1})\times{3}^{2}}}

\large\implies{\sf{(1+\dfrac{1}{3})\times9}}

\large\implies{\sf{(\dfrac{3+1}{3})\times9}}

\large\implies{\sf{\dfrac{4}{3}\times9}}

\large\implies{\sf{\dfrac{4}{\cancel{3}}\times\cancel{9}}}

\large\therefore\boxed{\bf{27))\:12.}}

★GIVEN★

\large{\sf{28))\:{5}^{2x+1}\div25=125}}

★To Find★

The value of x.

SOLUTION

\large\implies{\sf{{5}^{2x+1}\div25=125}}

We know that 5 × 5 = 25 and 5 × 5 × 5 = 125.

So,

\large\implies{\sf{{5}^{2x+1}\div{5}^{2}={5}^{3}}}

Comparing the bases,

\large\implies{\sf{2x+1-2=3}}

\large\implies{\sf{2x-1=3}}

\large\implies{\sf{2x=3+1}}

\large\implies{\sf{2x=4}}

\large\implies{\sf{x=\dfrac{4}{2}}}

\large\implies{\sf{x=\dfrac{\cancel{4}}{\cancel{2}}}}

\large\therefore\boxed{\bf{28))\:x=2}}

1)) Answer of 27)) is 12.

2)) Answer of 28)) is 2.

Similar questions