Math, asked by anshul775, 1 day ago

I need help in this tricky maths question.

Attachments:

Answers

Answered by maheshtalpada412
2

Answer:

 \begin{array}{l}\displaystyle \rm\bigstar \:  \:  \:  \:  \[ \frac{1-\tan ^{2}\left(\frac{\pi}{4}+\theta\right)}{1+\tan ^{2}\left(\frac{\pi}{4}+\theta\right)} \]  \\ \\ \\  \bigcirc \:  \sin \: 2 \theta \\ \red{ \pmb{{  \bigodot \:  -  \sin \: 2 \theta }}} \\  \bigcirc \:  \cos2 \theta \end{array}

\\  \rule{300pt}{0.1pt}

Answer: B

Step-by-step explanation:

 \\  \rm\bigstar \:  \:  \:  \:  \[ \frac{1-\tan ^{2}\left(\frac{\pi}{4}+\theta\right)}{1+\tan ^{2}\left(\frac{\pi}{4}+\theta\right)} \]

We know that,  \\ \rm \cos 2 \theta=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}

 \[ \begin{array}{l} \\  \displaystyle\rm  \frac{1-\tan ^{2}\left(\frac{\pi}{4}+\theta\right)}{1+\tan ^{2}\left(\frac{\pi}{4}+\theta\right)} \\\\  \displaystyle\rm =\cos 2\left(\frac{\pi}{4}+\theta\right) \\\\  \displaystyle\rm =\cos \left(\frac{\pi}{2}+2 \theta\right) \\ \\ \boxed{\green{   \displaystyle\rm=-\sin 2 \theta}} \end{array} \]

Similar questions