i need the solution for 134 question
Attachments:
rama99:
tq
Answers
Answered by
0
Let I=∫sec2(x)(sec(x)+tan(x))5dxI=∫sec2(x)(sec(x)+tan(x))5dx
Lets apply integration by parts technique,
Assume u=sec(x)⟹du=sec(x)tan(x)dxu=sec(x)⟹du=sec(x)tan(x)dx
and dv=sec(x)(sec(x)+tan(x))5dxdv=sec(x)(sec(x)+tan(x))5dx
⟹v=∫sec2(x)(sec(x)+tan(x))5dx⟹v=∫sec2(x)(sec(x)+tan(x))5dx
=∫sec(x)(sec(x)+tan(x))(sec(x)+tan(x))6dx=∫sec(x)(sec(x)+tan(x))(sec(x)+tan(x))6dx
=∫1(sec(x)+tan(x))6d(sec(x)+tan(x))=∫1(sec(x)+tan(x))6d(sec(x)+tan(x))
=−5(sec(x)+tan(x))5=−5(sec(x)+tan(x))5
As, ∫udv=uv−∫vdu∫udv=uv−∫vdu
So, I=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)(sec(x)+tan(x))5dxI=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)(sec(x)+tan(x))5dx
=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)−5sec2(x)(sec(x)+tan(x))5dx=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)−5sec2(x)(sec(x)+tan(x))5dx
=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)(sec(x)+tan(x))5dx−∫5sec2(x)(sec(x)+tan(x))5dx=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)(sec(x)+tan(x))5dx−∫5sec2(x)(sec(x)+tan(x))5dx
⟹I=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)(tan(x)+sec(x))(sec(x)+tan(x))5dx−5I⟹I=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)(tan(x)+sec(x))(sec(x)+tan(x))5dx−5I
⟹6I=−5sec(x)(sec(x)+tan(x))5−20(sec(x)+tan(x))4⟹6I=−5sec(x)(sec(x)+tan(x))5−20(sec(x)+tan(x))4
⟹I=−25sec(x)+20tan(x)6(sec(x)+tan(x))5+C
Lets apply integration by parts technique,
Assume u=sec(x)⟹du=sec(x)tan(x)dxu=sec(x)⟹du=sec(x)tan(x)dx
and dv=sec(x)(sec(x)+tan(x))5dxdv=sec(x)(sec(x)+tan(x))5dx
⟹v=∫sec2(x)(sec(x)+tan(x))5dx⟹v=∫sec2(x)(sec(x)+tan(x))5dx
=∫sec(x)(sec(x)+tan(x))(sec(x)+tan(x))6dx=∫sec(x)(sec(x)+tan(x))(sec(x)+tan(x))6dx
=∫1(sec(x)+tan(x))6d(sec(x)+tan(x))=∫1(sec(x)+tan(x))6d(sec(x)+tan(x))
=−5(sec(x)+tan(x))5=−5(sec(x)+tan(x))5
As, ∫udv=uv−∫vdu∫udv=uv−∫vdu
So, I=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)(sec(x)+tan(x))5dxI=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)(sec(x)+tan(x))5dx
=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)−5sec2(x)(sec(x)+tan(x))5dx=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)−5sec2(x)(sec(x)+tan(x))5dx
=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)(sec(x)+tan(x))5dx−∫5sec2(x)(sec(x)+tan(x))5dx=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)tan(x)+5sec2(x)(sec(x)+tan(x))5dx−∫5sec2(x)(sec(x)+tan(x))5dx
⟹I=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)(tan(x)+sec(x))(sec(x)+tan(x))5dx−5I⟹I=−5sec(x)(sec(x)+tan(x))5+∫5sec(x)(tan(x)+sec(x))(sec(x)+tan(x))5dx−5I
⟹6I=−5sec(x)(sec(x)+tan(x))5−20(sec(x)+tan(x))4⟹6I=−5sec(x)(sec(x)+tan(x))5−20(sec(x)+tan(x))4
⟹I=−25sec(x)+20tan(x)6(sec(x)+tan(x))5+C
Similar questions
Math,
7 months ago
India Languages,
7 months ago
India Languages,
7 months ago
Social Sciences,
1 year ago
Science,
1 year ago