Math, asked by saibaba55, 1 month ago

i need this 2 answers​

Attachments:

Answers

Answered by MrSagacious
11

~Anzwer :-

  • Equation 1)...

 \frac{3x}{2}  + 1 =  \frac{7}{4} x + 3 \\

2\times 3x+4=7x+12

6x+4=7x+12

6x+4-7x=12

-x+4=12

-x=12-4

-x=8

x =  - 8

∴ Hence, the first equation, value of $ x $ will be $ \bf{-8}$.

  • Equation 2)...

 \frac{1}{2} (x + 1) +  \frac{1}{3} (x - 1) =  \frac{5}{12} (x - 2) \\

\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(x-1\right)=\frac{5}{12}\left(x-2\right)  \\

\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}x+\frac{1}{3}\left(-1\right)=\frac{5}{12}\left(x-2\right)  \\

\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}x-\frac{1}{3}=\frac{5}{12}\left(x-2\right)  \\

\frac{5}{6}x+\frac{1}{2}-\frac{1}{3}=\frac{5}{12}\left(x-2\right)  \\

\frac{5}{6}x+\frac{3}{6}-\frac{2}{6}=\frac{5}{12}\left(x-2\right)  \\

\frac{5}{6}x+\frac{3-2}{6}=\frac{5}{12}\left(x-2\right)  \\

\frac{5}{6}x+\frac{1}{6}=\frac{5}{12}\left(x-2\right)  \\

\frac{5}{6}x+\frac{1}{6}=\frac{5}{12}x+\frac{5}{12}\left(-2\right)  \\

\frac{5}{6}x+\frac{1}{6}=\frac{5}{12}x+\frac{-10}{12}  \\

\frac{5}{6}x+\frac{1}{6}=\frac{5}{12}x-\frac{5}{6}  \\

\frac{5}{6}x+\frac{1}{6}-\frac{5}{12}x=-\frac{5}{6}  \\

\frac{5}{12}x+\frac{1}{6}=-\frac{5}{6}  \\

\frac{5}{12}x=-\frac{5}{6}-\frac{1}{6}  \\

\frac{5}{12}x=\frac{-5-1}{6}  \\

\frac{5}{12}x=\frac{-6}{6}  \\

\frac{5}{12}x=-1  \\

x=-\frac{12}{5}  \\

∴ Hence, in the second equation, value of $ x $ will be $ \bf{-\frac{12}{5}}$.

Answered by Anonymous
68

Required answers :-

ㅤㅤㅤㅤ1) x = -8 ㅤ

ㅤㅤㅤㅤ2) x= -12/5ㅤㅤ

Given to solve for x :- ㅤㅤㅤ

ㅤㅤㅤ \dfrac{3x}{2}  + 1 =  \dfrac{7}{4} x + 3

 \dfrac{1}{2} (x + 1) +  \dfrac{1}{3} (x - 1) =  \dfrac{5}{12} (x - 2)

SOLUTIONS :-

Question- 1 :-

ㅤㅤㅤ \dfrac{3x}{2}  + 1 =  \dfrac{7}{4} x + 3

‎ㅤㅤTake L.C.M to the denominators in L.H.S and R.H.S

 \dfrac{3x + 2(1)}{2}  =  \dfrac{7x + 4(3)}{4}

 \dfrac{3x + 2}{2}  =  \dfrac{7x + 12}{4}

3x + 2 =  \dfrac{7x + 12}{2}

ㅤDo the cross multiplication

(3x + 2)2 = 7x + 12

6x + 4 = 7x + 12

Transpose R.H.S terms to L.H.S

6x + 4 - 7x - 12 = 0

 - x - 8 = 0

 - x = 8

x =  \:  - 8

ㅤ So, the value of x is -8

ㅤㅤVerification :-

Substitute value of x it should be L.H.S = R.H.S

ㅤㅤㅤ \dfrac{3x}{2}  + 1 =  \dfrac{7}{4} x + 3

 \dfrac{3( - 8)}{2}  + 1 =  \dfrac{7( - 8)}{4}  + 3

 \dfrac{ - 24}{2}  + 1 =  \dfrac{ - 56}{4}  + 3

 \dfrac{ - 24 + 2}{2}  =  \dfrac{ - 56 + 12}{4}

 \dfrac{ - 22}{2}  =  \dfrac{ - 44}{4}

 - 11 =  \:  - 11

ㅤㅤHence verified !

_____________________________

Question- 2:-

 \dfrac{1}{2} (x + 1) +  \dfrac{1}{3} (x - 1) =  \dfrac{5}{12} (x - 2)

 \dfrac{x + 1}{2}  +  \dfrac{x - 1}{3} =   \dfrac{5(x - 2)}{12}

ㅤㅤㅤTake L.C.M to the denominators in L.H.S and R.H.S

 \dfrac{( x + 1)3 + (x - 1)2}{6}  =  \dfrac{5x - 10}{12}

 \dfrac{3x + 3 + 2x - 2}{6}  =  \dfrac{5x - 10}{12}

 \dfrac{5x + 1}{6}  =  \dfrac{5x - 10}{12}

5x + 1 =  \dfrac{5x - 10}{2}

Do the cross multiplication

(5x + 1)2 = 5x - 10

10x + 2 = 5x - 10

ㅤ Transpose R.H.S terms to L.H.S

10x - 5x + 2 + 10 = 0

5x + 12 = 0

5x =  - 12

x =  \dfrac{ - 12}{5}

ㅤㅤSo, the value of x is -12/5

ㅤㅤVerification:-

Substitute value of x it should be L.H.S = R.H.S

 \dfrac{1}{2} (x + 1) +  \dfrac{1}{3} (x - 1) =  \dfrac{5}{12} (x - 2)

 \dfrac{1}{2}  \bigg(\dfrac{ - 12}{5} + 1 \bigg) +  \dfrac{1}{3}  \bigg( \dfrac{ - 12}{5} - 1 \bigg) =  \dfrac{5}{12}  \bigg( \dfrac{ - 12}{5} - 2 \bigg)

 \dfrac{1}{2}  \bigg(\dfrac{ - 12 + 5}{5}  \bigg) +  \dfrac{1}{3}  \bigg( \dfrac{ - 12 - 5}{5}  \bigg) =  \dfrac{5}{12}  \bigg( \dfrac{ - 12- 10}{5} \bigg)

 \dfrac{1}{2}  \bigg(\dfrac{  - 7}{5}  \bigg) +  \dfrac{1}{3}  \bigg( \dfrac{ - 17}{5}  \bigg) =  \dfrac{5}{12}  \bigg( \dfrac{ - 22 }{5} \bigg)

 \dfrac{ - 7}{10}  -  \dfrac{17}{15}  =  \dfrac{5( - 22)}{12(5)}

 \dfrac{ - 7(3) - 17(2)}{30}  =  \dfrac{ - 110}{60}

 \dfrac{ - 21 - 34}{30}  =  \dfrac{ - 110}{60}

 \dfrac{ - 55}{30}  =  \dfrac{ - 11}{6}

 \dfrac{ - 11}{6}  =  \dfrac{ - 11}{6}

ㅤㅤㅤHence verified !

__________________________________

Similar questions