Math, asked by juliosoriore10, 10 months ago

I need to demostrate this Pythagorean identities

cosA/1+sinA + TanA = SecA

SenA-2sin3A / 2cos3A - cosA = Tan A

1+ sin A / 1 - sin A - 1-Sin A / 1+ Sin A = 4 Tan A sec A

Answers

Answered by Anonymous
100

↪Answer↩

Given : cosA/1 + sinA + tanA

= \ \textgreater \   \frac{cosA}{1 + sinA} +  \frac{sinA}{cosA}

= \ \textgreater \   \frac{cos^2A + sinA(1 + sinA)}{(1 + sinA)(cosA)}

= \ \textgreater \   \frac{cos^2A + sinA + sin^2A}{(1 + sinA)(cosA)}

= \ \textgreater \   \frac{1 + sinA}{(1 + sinA)(cosA)}

=  \ \textgreater \   \frac{1}{cosA}

SecA.

Answered by Anonymous
6

Answer:

check the attachment_______$❣️$

Attachments:
Similar questions