I need to demostrate this trigonometric identities URGENT!
1. SinA-2sin3A / 2cos3A - cosA = Tan A
2. 1+ sin A / 1 - sin A - 1-Sin A / 1+ Sin A = 4 Tan A sec A
Answers
Answered by
1
Step-by-step explanation:
(1).
SinA-2sin3A / 2cos3A - cosA
= sinA{1-2(sinA)^2}/cosA(2cos^2A - 1)
= sinA[(CosA)^2-(SinA)^2]/cosA(2cos^2A - 1)
= SinA(Cos2A)/cosA(2cos^2A - 1)
= TanA * Cos2A/[(cosA)^2 + cosA^2-CosA^2 - SinA^2]
[Because , Cos^A - SinA^2 = 1]
= TanA * Cos2A/[(cosA)^2 - SinA^2]
= TanA
(2).
1+ sin A / 1 - sin A - 1-Sin A / 1+ Sin A = 4 Tan A sec A
LHS
={(1+ sin A)/(1- sin A)}-(1-Sin A)/(1+Sin A)
= (1+sinA)^2/(cosA)^2 -(1-Sin A)^2/(cosA)^2
= (1/cosA)^2[4sinA]
= TanA SecA = RHS
Answered by
6
Answer:
Hence Proved
Step-by-step explanation:
See the attachments
Attachments:
Similar questions