Math, asked by 7348955938, 2 months ago

I NU UIL Ju term of an arithmetic progression 2, 6, 10, 14, .
5. al
18. Find the sum of first 20 terms of the arithmetic progression 3, 8, 13,
using the formula.
OR​

Answers

Answered by sainilavanya02
0

Answer:

a=2

d=6-2=4

n=20

s=n/2[2a+(n-1).d]

s=20/2[2.2+(20-1).4]

s=10[4+(19).4]

s=10[4+76]

s=10[80]

s=10*80

s=800

is my ans is correct or not

Step-by-step explanation:

Answered by harshitha202034
0

Answer :

Step by Step Explanation :

 {10}^{th}  \:  \: term \:  \: of \:  \: AP : 2,  \: 6,  \: 10, \:  14 \\ Here \:  \: a = 2, \:  \: d = 6 - 2 = 4 \:  \: n = 10 \\ T_{n} = a + (n - 1)d \\ T_{10} = 2 + (10 - 1)4 \\ T_{10} = 2 + (9)4 \\ T_{10} = 2 + 36 \\  \boxed{ T_{10} = \underline{ \underline{ 38}}} \\  \\ Sum \:  \: of \:  \: first \:  \: 20 \:  \: terms \:  \: of \:  \: AP : 3, \: 8, \: 13 \\ Here \:  \: a = 3, \:  \: d = 8 - 3 = 5 \:  \: n = 20  \\ S_{n} =  \frac{n}{2} [2a + (n - 1)d] \\ S_{20} =  \frac{20}{2} [2 \times 3 + (20 - 1)5]  \\ S_{20} =  10 [6 + (19)5]  \\  S_{20} =  10 [6 + 95] \\ S_{20} =  10 [101] \\  \boxed{ S_{20} = \underline{ \underline{  1010}}}

[]

Similar questions