Math, asked by NITESH761, 1 month ago

I proved 2=0

\large \sf 2=1+1
\large \sf 2=1+\sqrt{1}
\large \sf 2=1+\sqrt{(-1)(-1)}
\large \sf 2=1+\sqrt{(-1)}\sqrt{(-1)}
\large \sf 2=1+(i)(i)
\large \sf 2=1+(i)^2
\large \sf 2=1+(-1)
\large \sf 2=1-1
\large \sf 2=0


Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

The fallacy in the above statement is

\red{\rm :\longmapsto\: \sqrt{( - x)( - y)} \:  \ne \:  \sqrt{xy} }

As the correct Statement is

\red{\rm :\longmapsto\: \sqrt{( - x)( - y)} \:   =  \:  -  \:  \sqrt{xy} }

Let first prove this,

So, Consider

\rm :\longmapsto\: \sqrt{( - x)( - y)}

can be rewritten as

\rm \:  =  \:  \sqrt{( - x)} \times  \sqrt{( - y)}

\rm \:  =  \:  \sqrt{ -1 \times  x} \times  \sqrt{ -1 \times  y}

\rm \:  =  \:  \sqrt{ - 1} \times  \sqrt{x} \times  \sqrt{ - 1} \times  \sqrt{y}

\rm \:  =  \:  i \times  \sqrt{x} \times  i \times  \sqrt{y}

\rm \:  =  \:   {i}^{2}  \times  \sqrt{x}  \times  \sqrt{y}

\rm \:  =  \:  -  \sqrt{xy}

So,

\red{\rm :\longmapsto\: \sqrt{( - x)( - y)} \:   =  \:  -  \:  \sqrt{xy} }

Now,

\rm :\longmapsto\:2 = 1 + 1

\rm :\longmapsto\:2 = 1 +  \sqrt{1}

\rm :\longmapsto\:2 = 1  \red{-   \sqrt{( - 1)( - 1)} }

\rm :\longmapsto\:2 = 1 +   \red{ [-  \sqrt{( - 1)( - 1)} \: ]}

\rm :\longmapsto\:2 = 1 +   \red{ [-  \sqrt{( - 1)} \times  \sqrt{( - 1)}  \: ]}

\rm :\longmapsto\:2 = 1 +   \red{ [-  i \times i  \: ]}

\rm :\longmapsto\:2 = 1 +   \red{ [-  {i}^{2}  \: ]}

\rm :\longmapsto\:2 = 1 +   \red{ [-  ( - 1)  \: ]}

\rm :\longmapsto\:2 = 1 +   \red{ [1  \: ]}

\rm :\longmapsto\:2 = 2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions
Physics, 1 month ago