Math, asked by Anonymous, 10 months ago

i) Rationalize the denominator
7+ √3 very fast




Answers

Answered by Anonymous
0

Correct Question:

Rationalize the denominator:-

1/7+√3

Answer:-

 \bf \implies \frac{1}{7 +  \sqrt{3} }

 \: \bf \implies \frac{1}{7 +  \sqrt{3} }  \times  \frac{7 -  \sqrt{3} }{7 -  \sqrt{3} }

\bf \implies \frac{7 -  \sqrt{3} }{ {(7)}^{2} -  {( \sqrt{3}) }^{2}  }

\bf \implies \frac{7 -  \sqrt{3} }{49 - 3}

\bf \implies \frac{7 -  \sqrt{3} }{46}

 \bf \huge \fbox \red{ \: answer :  \:  \frac{7 -  \sqrt{3} }{46}  \: }

Answered by rajn58
0

Answer:

Correct Question:

Rationalize the denominator:-

1/7+√3

Answer:-

\bf \implies \frac{1}{7 + \sqrt{3} }⟹7+31

\: \bf \implies \frac{1}{7 + \sqrt{3} } \times \frac{7 - \sqrt{3} }{7 - \sqrt{3} }⟹7+31×7−37−3

\bf \implies \frac{7 - \sqrt{3} }{ {(7)}^{2} - {( \sqrt{3}) }^{2} }⟹(7)2−(3)27−3

\bf \implies \frac{7 - \sqrt{3} }{49 - 3}⟹49−37−3

\bf \implies \frac{7 - \sqrt{3} }{46}⟹467−3

Similar questions