Math, asked by gogoistic, 1 month ago

(i) Show that 1 +i and 1 - i satisfy the equation
z {}^{2}  - 2z + 2 = 0

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given quadratic equation is

\rm :\longmapsto\: {z}^{2} - 2z + 2 = 0

Since, its a quadratic equation, so its roots can be evaluated using Quadratic Formula.

We know,

Quadratic Formula is

\rm :\longmapsto\:z = \dfrac{ - b \:  \pm \:  \sqrt{ {b}^{2}  - 4ac} }{2a}

Here,

\rm :\longmapsto\:a = 1

\rm :\longmapsto\:b =  - 2

\rm :\longmapsto\:c=  2

So, on substituting the values of a, b and c, we get

\rm :\longmapsto\:z = \dfrac{ - ( - 2) \:  \pm \:  \sqrt{ {( - 2)}^{2}  - 4(1)(2)} }{2(1)}

\rm :\longmapsto\:z = \dfrac{2 \:  \pm \:  \sqrt{{4 - 8 }}}{2}

\rm :\longmapsto\:z = \dfrac{2 \:  \pm \:  \sqrt{{- 4}}}{2}

\rm :\longmapsto\:z = \dfrac{2 \:  \pm \:  2i}{2}

\bf\implies \:z = 1 \:  \pm \: i

Hence,

\green{\bf :\longmapsto\:1 + i \: and \: 1 - i \: satisfy \:  {z}^{2} - 2z + 2 = 0}

Alternative Method

Given Quadratic Equation is

\rm :\longmapsto\: {z}^{2} - 2z + 2 = 0

can be rewritten as

\rm :\longmapsto\: {z}^{2} - 2z + 1 + 1 = 0

\rm :\longmapsto\:( {z}^{2} - 2z + 1)+ 1 = 0

\rm :\longmapsto\:( {z}^{2} - 2z +  {1}^{2} ) - ( - 1) = 0

\rm :\longmapsto\: {(z - 1)}^{2} -  {i}^{2} = 0 \:  \:  \:  \:  \:  \:  \:  \:   \purple{\{\bf \because \: {i}^{2} =  - 1 \}}

\rm :\longmapsto\:(z - 1 + i)(z - 1 - i) = 0

\red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \bigg \}}

\bf\implies \:z = 1 - i \:  \: or \:  \: 1 + i

Hence,

\red{\bf :\longmapsto\:1 + i \: and \: 1 - i \: satisfy \:  {z}^{2} - 2z + 2 = 0}

Similar questions