i) (sin 2x)/(1 - cos 2x) = tanx
Answers
Answered by
1
Answer:
How does one prove sin 2x / 1+ cos 2x = tan x ,hence show that tan (67.5) =√2 + 1?
TVS Eurogrip Tyre Mela – the bike tyre specialist.
Sin 2x = 2 sinx cosx
Cos2x = 2 cos^2 x - 1
So, (sin 2x)/(1+cos 2x)
= 2 sin x cos x /(1 + 2 cos^2 x - 1)
= 2 sin x cos x /2 cos^2 x
= sin x /cos x
= tan x
For the second part,we have
tanx = sin 2x/(1+cos2x)
Put x = 67.5°
tan 67.5° = sin 135°/ 1+ cos 135°
Now sin 135° = sin (180°-45°) = sin 45° = 1/√2
and cos 135° = cos (180°-45°) = -cos45° = -1/√2.
So, tan x = (1/√2)/(1–1/√2) = (1/√2)/{(√2–1)/√2} = 1/(√2–1) = (√2+1)/1 = √2 + 1.
Similar questions