i sin 2x is equal to what?
Answers
Answered by
4
tan(theta) = sin(theta) / cos(theta) = a / b. cot( theta) = 1/ ... cos(2x) = cos^2(x) - sin^2(x) = 2 cos^2(x) - 1 = 1 - 2 sin^2(x). tan(2x) = 2 tan(x) ...
Answered by
1
sin(2x)=2sinxcosxsin(2x)=2sinxcosx
This can be derived by another Trigonometric Function,
sin(2x)=sin(x+x)sin(2x)=sin(x+x)
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB
sin(x+x)=sinxcosx+cosxsinxsin(x+x)=sinxcosx+cosxsinx
=sinxcosx+sinxcosx=sinxcosx+sinxcosx
=2sinxcosx=2sinxcosx
So,
sin(2x)=2sinxcosxsin(2x)=2sinxcosx
Now, 2sixcosx2sixcosx can be written as
2sinxcosx/12sinxcosx/1
OR
2sinxcosx/sin2x+cos2x2sinxcosx/sin2x+cos2x
Dividing by cos2xcos2x
2sinxcosx/cos2x/sin2x+cos2x/cos2x2sinxcosx/cos2x/sin2x+cos2x/cos2x
On solving this gives an other solution for sin(2x)sin(2x),
=2tanx/1+tan2x=2tanx/1+tan2x
sin(2x)=2sinxcosxsin(2x)=2sinxcosxOR2tanx/1+tan2x
This can be derived by another Trigonometric Function,
sin(2x)=sin(x+x)sin(2x)=sin(x+x)
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=sinAcosB+cosAsinB
sin(x+x)=sinxcosx+cosxsinxsin(x+x)=sinxcosx+cosxsinx
=sinxcosx+sinxcosx=sinxcosx+sinxcosx
=2sinxcosx=2sinxcosx
So,
sin(2x)=2sinxcosxsin(2x)=2sinxcosx
Now, 2sixcosx2sixcosx can be written as
2sinxcosx/12sinxcosx/1
OR
2sinxcosx/sin2x+cos2x2sinxcosx/sin2x+cos2x
Dividing by cos2xcos2x
2sinxcosx/cos2x/sin2x+cos2x/cos2x2sinxcosx/cos2x/sin2x+cos2x/cos2x
On solving this gives an other solution for sin(2x)sin(2x),
=2tanx/1+tan2x=2tanx/1+tan2x
sin(2x)=2sinxcosxsin(2x)=2sinxcosxOR2tanx/1+tan2x
Similar questions