Math, asked by pranjalvermahajipur, 10 months ago

(i) sin 30° + tan 45º - cosec 60°
sec 30° + cos 60° + cot 45°

Answers

Answered by amansharma264
0

 \large \bold \green{ \underline{answer =  \frac{5}{3} }}

Step-by-step explanation:

  \large \bold{ \underline{question}} \\ 1) =  \sin(30) {}^{0} +  \tan(45) {}^{0} -  \csc(60 ){}^{0}. \sec(30) {}^{0} +  \cos(60) {}^{0} +  \cot(45) {}^{0} \\  =  \frac{1}{2} + 1 -  \frac{2}{ \sqrt{3} } \times  \frac{2}{ \sqrt{3} } +  \frac{1}{2} + 1 \\ \\   =  \frac{1}{2} + 1 -  \frac{4}{3} +  \frac{1}{2} + 1 \\  \\  =  \frac{3 + 6 - 8 + 3 + 6}{6}  \\  \\  =  \frac{10}{6} =  \frac{5}{3}

Answered by Anonymous
0

QUESTION:

(i) sin 30° + tan 45º - cosec 60°

sec 30° + cos 60° + cot 45°

ANSWER:

We use the trigonometry identity here;

1.

 \sin(30)  =  \frac{1}{2}

2.

 \tan(45)  = 1

3.

 \csc(60)  =  \frac{2}{ \sqrt{3} }

4.

 \sec(30)  = [tex]\frac{2}{ \sqrt{3} }

5.

 \cos(60)  =  \frac{1}{2}

6.

 \cot(45)  = 1

now come to main question;

 \sin(30)  +  \tan(45)  -  \csc(60)  \times  \sec(30)  +  \cos(60)  +  \cot(45)  \\

 \frac{1}{2}  + 1 -  \frac{4}{3} +   \frac{1}{2}  + 1

 \frac{1}{2}  + 1 -  \frac{2}{ \sqrt{3} }  \times  \frac{2}{ \sqrt{3} }  +  \frac{1}{2}  + 1

(taking \: lcm)

 \frac{3 + 6 - 8 + 3 + 6}{6}

 \frac{10}{6}

(in \: simplest \: form)

 \frac{5}{3}

FINAL ANSWER :

\huge\red {\frac{5}{3} }

Similar questions