(i) sin o sin(90° - 0) - cos O cos (90° - 0) = 0
Answers
Answered by
0
Answer:
given that
let LHS=
sin 0cos (90--0)+sin (90--0)cos0
now using
\begin{gathered}sin(90 - \alpha ) = cos \alpha \\ cos(90 - \alpha ) = sin \alpha \end{gathered}
sin(90−α)=cosα
cos(90−α)=sinα
therefore LHS =sin0sin0+cos0cos0
now using
\begin{gathered} \sin(0 ) = 0 \\ \cos(0) = 1 \end{gathered}
sin(0)=0
cos(0)=1
LHS=0*0+1*1
=1=RHS
Answered by
0
Answer:
0
Step-by-step explanation:
sin 0= 0
sin(90-0)= cos0=1
cos0 =1
cos(90-0)=sin0
so, sin 0*sin(90-0) - cos 0 * cos(90-0)
0*1 - 1*0
0-0
0
Hence, Proved
Similar questions