Math, asked by vijayiprince64, 11 months ago

I
solve
for x
&
y
12/x + 5/y = I
6o/X + 40/y =19​

Answers

Answered by vy1551128
2

follow me

Step-by-step explanation:

12y + 5x = xy

60y +40x = 19xy

then

60y + 25x = 5 xy

- 60y+ 40x =19xy

solve

then -15x= -19xy

x = 19/15

Answered by Anonymous
3

AnswEr

x = -36/11

y = 15/14

Given

The equations are :

  •  \sf{ \frac{12}{x}  +  \frac{5}{y}  = 1}
  •   \sf{\frac{60}{x}  +  \frac{40}{y}  = 19}

To Find

  • The values of x and y

Solition

Let us consider 1/x = p and 1/y = q so that the equations becomes :

 \sf{12p + 5q = 1}\\ \implies  \sf{60p+ 25q= 5 -  -  - (1)}

And the another one

 \sf{60p+ 40q= 19 -  -  -  (2)}

Subtracting (1) from (2)

 \sf{60p + 40q - 60p - 25q = 19 - 5} \\  \sf {\implies15q = 14} \\   \implies \sf {q =  \frac{14}{15} } \\  \implies \sf \frac{1}{y}  =  \frac{14}{15}  \\  \implies \sf{y =  \frac{15}{14} }

And using the value of y in given equation we have :

 \sf \implies \frac{12}{x}  +  \frac{5}{ \frac{15}{14} }  = 1 \\   \sf\implies  \frac{12}{x}  +  \frac{70}{15}  = 1 \\  \implies \sf \frac{12}{x}  = 1 -  \frac{14}{3}  \\  \implies \sf{ \frac{12}{x} } =  \frac{ - 11}{3}  \\  \implies \sf{x =   - \frac{36}{11} }

Similar questions