(i) Solve the following problem :
The radius of planet A is half the radius of planet B. If the mass of A is
MĀ, what must be the mass of B so that the value of g on B is half that of
its value on A?
Answers
Answered by
1
Answer:
Given: Radius of planet A is half radius of planet B.
RA*= 1/2 RB*
i.e. RB*=2RA*
Value of gravity on planet B is half that on planet A.
gB*=1/2 gA*
i.e. gA*=2gB*
Mass of planet A = MA*
Mass of planet B = MB*=?
g =GM/R^2
gA* = GMA*/RA*^2 ..........(1)
gB* = GMB*/RB*^2 ..........(2)
Dividing (1) by (2)
gA*/gB*=GMA*/RA*^2÷GMB*/RB*^2
gA*/gB* =GMA*/RA*^2×RB*^2/GMB*
2GB*/GB*=GMA*/RA*^2×(2RA*)^2/GMB* ...........(GIVEN)
2=MA*/RA*^2×4RA*^2/MB*
2=4MA*/MB*
2MB*=4MA*
÷ BY 2,
MB*=2MA*
Hope it will help you
MARK ME BRILLIANT
PLEASE
Similar questions
Math,
5 months ago
English,
5 months ago
English,
5 months ago
Math,
9 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago