i.
त्रिज्या r असलेल्या वर्तुळाच्या AB आणि AC या दोन जीवा आहेत. जर p आणि १ ही अनुक्रमे जीवा AB व
जीवा CD ची केंद्रापासून अंतर आहेत आणि जर AB = 2AC, तर
सिद्ध करा
Answers
Answer:
it is proved that 4q^2 = p^2 + 3r^2.
Step-by-step explanation:
Consider O as the centre of the circle with radius of r
So we get
OB = OC = r
Consider AC = x and AB = 2x
We know that OM ⊥ AB
So we get
OM = p
We know that ON ⊥ AC
So we get
ON = q
Consider △ OMB
Using Pythagoras' theorem
OB^2 = OM^2 + BM^2
We know that the perpendicular from the centre of the circle bisects the chord
So we get
r^2 = p^2 + ((1/2) AB)^2
It can be written as
r^2 = p^2 + ¼ × 4x^2
So we get
r^2 = p^2 + x^2 ……… (1)
Consider △ ONC
Using Pythagoras' theorem
OC^2 = ON^2 + CN^2
We know that the perpendicular from the centre of the circle bisects the chord
So we get
r^2 = q^2 + ((1/2) AC)^2
It can be written as
r^2 = q^2 + x^2/4
We get
q^2 = r^2 - x^2/4
Multiplying the equation by 4
4q^2 = 4r^2 - x^2
Substituting equation (1)
4q^2 = 4r^2 – (r^2 - p^2)
So we get
4q^2 = 3r^2 + p^2
Therefore, it is proved that 4q^2 = p^2 + 3r^2.