I=tan^-1(sec3x+tan3x) dx
pls ans this integration
Answers
Answer:
We have
... sec 3x + tan 3x
= ( 1 + sin 3x ) / cos 3x
= ( cos 3x/2 + sin 3x/2 )² / [ ( cos 3x/2 + sin 3x/2)( cos 3x/2 - sin 3x/2 ) ]
= ( cos 3x/2 + sin 3x/2 ) / ( cos 3x/2 - sin 3x/2 )
= ( 1 + tan 3x/2 ) / ( 1 - tan 3x/2 )
= ( tan π/4 + tan 3x/2 ) / ( 1 - tan π/4 tan 3x/2 )
= tan (π/4 + 3x/2) ...................................................... (1)
_____________________________
Then, the required integral is
= ∫ tanֿ¹ [ tan (π/4 + 3x/2) ] dx
= ∫ (π/4 + 3x/2) dx
= (π/4) ∫ dx + (3/2) ∫ x dx
= (π/4)x + (3/2)( x² / 2 ) + C
= (1/4) ( πx + 3x² ) + C ..................... Ans.
_________________________
Happy To Help ! ^-^
__________________________
Step-by-step explanation:
... sec 3x + tan 3x
= ( 1 + sin 3x ) / cos 3x
= ( cos 3x/2 + sin 3x/2 )² / [ ( cos 3x/2 + sin 3x/2)( cos 3x/2 - sin 3x/2 ) ]
= ( cos 3x/2 + sin 3x/2 ) / ( cos 3x/2 - sin 3x/2 )
= ( 1 + tan 3x/2 ) / ( 1 - tan 3x/2 )
= ( tan π/4 + tan 3x/2 ) / ( 1 - tan π/4 tan 3x/2 )
= tan (π/4 + 3x/2) ........................................... (1)
_____________________________
Then, the required integral is
= ∫ tanֿ¹ [ tan (π/4 + 3x/2) ] dx
= ∫ (π/4 + 3x/2) dx
= (π/4) ∫ dx + (3/2) ∫ x dx
= (π/4)x + (3/2)( x² / 2 ) + C
= (1/4) ( πx + 3x² ) + C ..................... Ans.