Math, asked by DVRABHIRAM3841, 9 months ago

I=tan^-1(sec3x+tan3x) dxpls ans this integration​

Answers

Answered by Anonymous
62

Question :

Integrate

 \sf \int \tan {}^{ - 1} ( \sec3x +  \tan3x)dx

Solution :

We have to integrate

 \sf \int \tan {}^{ - 1} ( \sec3x +  \tan3x)dx

•First solve the inverse trignometric part

 \sf  \tan {}^{ - 1} ( \sec3x +  \tan3x)

 =  \sf \tan {}^{ - 1}   ( \dfrac{1}{ \cos3x}  +  \dfrac{ \sin3x}{ \cos3x} )

 =  \sf \tan {}^{ - 1} ( \dfrac{1 +  \sin3x}{ \cos3x} )

 =  \sf \tan {}^{ - 1} ( \dfrac{ \cos {}^{2}  \frac{3x}{2}  +  \sin {}^{2}  \frac{3x}{2}  + 2 \sin \frac{3x}{2} \cos \frac{3x}{2}  }{ \cos {}^{2} \frac{3x}{2}  -  \sin {}^{2}  \frac{3x}{2} } )

 =  \sf \tan {}^{ - 1} ( \dfrac{(cos \frac{3x}{2}  +  \sin \frac{3x}{2} ) {}^{2} }{ (cos \frac{3x}{2}  +  \sin \frac{3x}{2})(cos \frac{3x}{2}   -  \sin \frac{3x}{2})})

 =  \sf \tan {}^{ - 1} (\dfrac{\cos\frac{3x}{2}  +  \sin \frac{3x}{2}}{cos \frac{3x}{2}   -  \sin \frac{3x}{2}})

 = \sf \tan {}^{ - 1} ( \dfrac{ 1 +  \tan \frac{3x}{2} }{1 -  \tan \frac{3x}{2} } )

  = \sf \tan {}^{ - 1} (\dfrac{ \tan \frac{\pi}{4}  +  \tan \frac{3x}{2}}{1 -  \tan \frac{\pi}{4}  \tan \frac{3x}{2} })

  = \sf \tan {}^{ - 1} ( \tan(\dfrac{\pi }{4}  +  \dfrac{3x}{2} )

We know that

 \tan {}^{ - 1} ( \tan \: x) = x

 =  \sf  \dfrac{\pi}{4}  +  \dfrac{3x}{2} ....(1)

Now ,

•Put equation (1) value in integration:

 \implies \sf  \int\tan {}^{ - 1} ( \sec3x +  \tan3x)dx =  \int( \dfrac{\pi}{4}  +  \dfrac{3x}{2})dx

 =  \int \frac{ \pi}{4} dx +  \int \frac{3x}{2}dx

 \sf =  \dfrac{ \pi}{4}x +  \dfrac{3x {}^{2} }{2}  \times  \dfrac{1}{2}  + c

 \sf =  \dfrac{1}{4}(\pi \: x + 3x {}^{2}  ) + c

________________________

Formula's used :

1) \sf \: cos2x =  \cos {}^{2} x -  \sin {}^{2} x

2) \sf \sin2x = 2 \sin \: x \cos \: x

 \sf3) \tan(x + y) =   \dfrac{ \tan \: x  +  \tan \: y}{1 -  \tan \: x \tan \: y}

Answered by TheVenomGirl
55

AnSwer:

Our question is:

 \star \sf{ I = \int tan^{-1} ( sec(3x) + tan(3x) ) dx }

So we need to simplify,

 \star \sf{ ( sec(3x) + tan(3x) ) }

 = \sf{ \dfrac{1}{cos(3x)} + \dfrac{sin(3x)}{cos(3x)} }

 = \sf{  \dfrac{sin(3x) + 1}{cos(3x)}}

Now as we know,

 \star \sf{  \dfrac{1 + sin(2a)}{cos(2a)} =  \dfrac{1 + tan(a)}{1 - tan(a)}}

 \implies \sf{  \dfrac{1 + sin(3x)}{cos(3x)} =  \dfrac{1 + tan \left(\frac{3x}{2}\right)}{1 - tan\left(\frac{3x}{2}\right)}}

 \implies \sf{  \dfrac{1 + tan \left(\frac{3x}{2}\right)}{1 - tan\left(\frac{3x}{2}\right)} = tan\left( \frac{\pi}{4} + \frac{3x}{2} \right) }

Now we also know that,

 \star \sf{ tan^{-1} .tan(x) = x}

Therefore,

  \sf{  = \int tan^{-1}  tan\left( \frac{\pi}{4} + \frac{3x}{2} \right)\:  dx }

 \sf { = \int \left(\dfrac{\pi}{4} + \dfrac{3x}{2}\right) \: dx }

 \sf { = \int \dfrac{\pi}{4} \: dx \: + \int \dfrac{3x}{2}\: dx }

 \sf { = \dfrac{\pi}{4}(x) \: + \dfrac{3x^2}{4} + c  }

 \boxed{\sf{ I = \dfrac{x}{4} ( \pi + 3x ) + c }}

Similar questions