Math, asked by nabina02, 6 months ago

i) tan30° + cosec45°. sec45° + cos60°​

Answers

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

(1) tan30+cosec45.sec45 +cos60

\huge\mathfrak{\underline{\underline{\red{Answer:-}}}}

 \large \green{\bold{ \underline{step \: by \: step \: explaination : }}}

Trigonometric Values :

  \bullet \sf{tan30 \degree =  \frac{1}{ \sqrt{3} } }

 \bullet \sf \: cosec45 \degree = 2

 \bullet \sf \: sec45 \degree = 2

 \bullet \sf \: cos60 \degree =  \frac{1}{2}

 \large \pink{ \bold{ \underline{substitute \: the \: trigonometric \: values \: in \: equation}}}

   \\ :  \implies \displaystyle \tt \: tan30 \degree + cosec45 \degree + sec45 \degree + cos60 \degree

  :  \implies \displaystyle \tt \:  \frac{1}{ \sqrt{3} }  + 2 \times 2 +  \frac{1}{2}

  :  \implies \displaystyle \tt\:  \frac{1}{ \sqrt{3} }  + 4 +  \frac{1}{2}

 : \implies \displaystyle \tt \:  \frac{1}{ \sqrt{3} }  +  \frac{8 + 1}{2}

  :  \implies \displaystyle \tt \:  \frac{1}{ \sqrt{3} }  +  \frac{9}{2}

 :  \implies \displaystyle \tt \:  \frac{2 + 9 \sqrt{3} }{2 \sqrt{3} }

 \boxed{ \boxed{ \underline{ \mathbf{the \: answer \: will \: be \:  \frac{ 2 + 9\sqrt{3} }{2 \sqrt{3} } }}}}

Answered by gayathribijuanthinad
0

Answer:

(2√3 + 15) / 6

Step-by-step explanation:

tan 30 ° = 1/√3

cosec 45 ° = √2

sec 45 ° =  √2

cos 60 ° =  1/2

tan 30° + cosec 45° . sec 45° + cos 60° = 1/√3  + √2 . √2 + 1/2

                                                                = 1/√3 + 2 + 1/2

                                                                 = (2 + 4√3 + √3 ) / 2√3

                                                                 = ( 2 + 4√3 + √3 ) / 2√3 * √3 / √3

                                                                  = ( 2√3 + 12 + 3 ) /6

                                                                 = ( 2√3 + 15  ) / 6

Similar questions