Math, asked by srishti6623, 2 months ago

(i)
(7 + 3 \sqrt{5} ) \div (7 - 3 \sqrt{5)}

Answers

Answered by Anonymous
0

  \small\bold{Value  \: of  \: rationalization  \: of \:  \bold{\frac{7+3 \sqrt{5}}{7-3 \sqrt{5}}} }

 \bold{ is  \: equal \:  to \bold{\frac{(47+21 \sqrt{5 )}}{2}} }

Solution:

 \small \bold{To  \: start  \: with, \:  rationalization  \: we  \: need \:  to \:  multiply  \: 7+3 \sqrt{5}}

with both the numerator and denominator to

  \small\bold{remove  \: the \:  roots. \:  Multiplying \:  7+3 \sqrt{5}7+3 }

we get,

\frac{7+3 \sqrt{5}}{7-3 \sqrt{5}} \times \frac{7+3 \sqrt{5}}{7+3 \sqrt{5}}

 \small\bold{\frac{(7+3 \sqrt{5})^{2}}{(7)^{2}-(3 \sqrt{5})^{2}}=\frac{49+42 \sqrt{5}+45}{49-45}=\frac{94+42 \sqrt{5}}{4} }

 \bold{(we \:  get  \: the \:  values \:  in \:  (a+b)^{2}}

 \small  \bold{mode  \: in \:  the \:  numerator  \: and \left(a^{2}-b^{2}\right)}

mode in the denominator. Therefore, the primary value after multiplication is

Taking 2 common in both numerator and

 \bold{denominator \:  we  \: get \:  \frac{94+42 \sqrt{5}}{4} }</p><p></p><p>

\bold{\frac{2(47+21 \sqrt{5})}{2.2}=\frac{(47+21 \sqrt{5})}{2}}

Similar questions