Math, asked by starrexx85, 1 year ago

i
if x = 7 + 4 \sqrt{3}  \: find \: the \: value \: of \:  \sqrt{x}  +  \frac{1}{ \sqrt{x} }

Answers

Answered by chiku0
8
Hey mate!!

Refer to the attachment above for your answer!!

Thanks for the question!

♥♥♥
Attachments:

starrexx85: thanks
chiku0: welcome dear ^_^
Answered by BrainlyQueen01
9
Hey there!

Given : x = 7 + 4√3

To find : √x + 1 / √x

__________________________

<b><u>Solution:</b></u>

x = 7 + 4√3

=> x = 4 + 3 + 4√3

=> x = (2)² + (√3)² + 2 × 2 × √3

Using Identity:

a² + b² + 2ab = (a + b)²

We have,

x = (2 + √3)²

So,

 \sqrt{x}  =  \sqrt{(2 +  \sqrt{3}) {}^{2}  }  \\  \\  \sqrt{x}  = 2 +  \sqrt{3}

And,

 \frac{1}{ \sqrt{x} }  =  \frac{1}{2 +  \sqrt{3} }  \times   \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{2 -  \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2}  }  \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{2 -  \sqrt{3} }{4 - 3}   \\ \\ \frac{1}{ \sqrt{x} }  = 2 -  \sqrt{3}

Now, coming to the question;

 \sqrt{x}  +  \frac{1}{ \sqrt{x} }  = 2 +\cancel{  \sqrt{3} } + 2 -   \cancel{\sqrt{3} } \\  \\\sqrt{x}  +  \frac{1}{ \sqrt{x} }  =2 + 2  \\  \\  \boxed{ \bold{ \sqrt{x}  +  \frac{1}{ \sqrt{x} }  =4}}


__________________________

Thanks for the question!
Similar questions