Math, asked by deepsandhu1754, 28 days ago

i) The function f(x) = cos x - sin x has maximum or minimum value at

Answers

Answered by mathdude500
4

\large\underline\blue{\bold{Given \:  Question   }}

f(x) = cos x - sin x

\large\underline\blue{\bold{To \:  Find   }}

Local Maximum and Local Minimum

\large\underline\blue{\bold{Theory  }}

How to Find Maximum and Minimum Points Using Differentiation ?

The value of the function at a maximum point is called the maximum value of the function and the value of the function at a minimum point is called the minimum value of the function.

  • Differentiate the given function.

  • let f'(x)  =  0 and find critical numbers

  • Then find the second derivative f''(x).

  • Apply those critical numbers in the second derivative.

  • The function f (x) is maximum when f''(x) < 0

  • The function f (x) is minimum when f''(x) > 0

  • To find the maximum and minimum value we need to apply those x values in the given function.

\large\underline\blue{\bold{Solution :-  }}

\tt \: f(x) = cos x - sin x -  - (i)

On differentiating both sides w. r. t. x, we get

:\implies \tt \:  f'(x) \:  =  \:  -  \: sinx \:  -  \: cosx -  - (ii)

For maximum or minimum value,

:\implies  \boxed{ \pink{\tt \:  f'(x) = 0}}

:\implies \tt \:   - sinx \:  - cosx = 0

:\implies \tt \:   - cosx = sinx

:\implies \tt \:  \dfrac{sinx}{cosx}  =  - 1

:\implies \tt \:  tanx \:  =  \:   -  \: 1

As we know, tanx < 0 in second and fourth quadrant and tanx = 1 at 45°.

:\implies \tt \:  x = \pi \:  -  \: \dfrac{\pi}{4}  \: or \: x \:  =  \: 2\pi \:  - \dfrac{\pi}{4}

:\implies \boxed{ \pink{ \tt \:  x \:  =  \: \: \dfrac{3\pi}{4}   \: or \: x \:  =  \: \: \dfrac{7\pi}{4}  }}

Now, again differentiating (i) both sides w. r. t. x, we get

:\implies \tt \:  f''(x) = sinx \:  -  \: cosx

:\implies \tt \:  At \: x \:  = \: \dfrac{3\pi}{4}

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  ) = sin\: \dfrac{3\pi}{4}   - cos\: \dfrac{3\pi}{4}

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  ) =sin(\pi \:  - \: \dfrac{\pi}{4}  ) - cos(\pi \:  - \: \dfrac{\pi}{4}  )

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  ) =sin\: \dfrac{\pi}{4}   + cos\: \dfrac{\pi}{4}

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  ) =\dfrac{1}{ \sqrt{2} }  + \dfrac{1}{ \sqrt{2} }

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  ) =\dfrac{2}{ \sqrt{2} }

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  ) =  \sqrt{2}

:\implies \tt \:  f''(\: \dfrac{3\pi}{4}  )  &gt; 0

:\implies  \boxed{ \pink{\tt \:  f(x) \: is \: minimum \: at \: x = \: \dfrac{3\pi}{4}  }}

:\implies \tt \:  minimum \: value \: is \:     \red{ \bf \: \: f(\: \dfrac{3\pi}{4}  ) }

:\implies \tt \:  f(\: \dfrac{3\pi}{4}  ) =cos\: \dfrac{3\pi}{4}   - sin\: \dfrac{3\pi}{4}

:\implies \tt \:  f(\: \dfrac{3\pi}{4}  ) =cos\: (\pi \:  - \dfrac{\pi}{4})   - sin\:(\pi \:  -  \dfrac{\pi}{4}  )

:\implies \tt \:  f(\: \dfrac{3\pi}{4}  ) = -  \: cos\: \dfrac{\pi}{4}   - sin\: \dfrac{\pi}{4}

:\implies \tt \:  f(\: \dfrac{3\pi}{4}  ) = \:  - \dfrac{1}{ \sqrt{2} }  - \dfrac{1}{ \sqrt{2} }

:\implies \tt \:  f(\: \dfrac{3\pi}{4}  ) =  - \: \dfrac{2}{ \sqrt{2} }

:\implies \boxed{ \pink{ \tt \:  f(\: \dfrac{3\pi}{4}  ) = -  \sqrt{2} }}

 \bf \red{now}

:\implies \tt \:  At \: x \:  = \: \dfrac{7\pi}{4}

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  ) =sin\: \dfrac{7\pi}{4}   - cos\: \dfrac{7\pi}{4}

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  ) =sin(2\pi \:  - \: \dfrac{\pi}{4}  ) - cos(2\pi \:  - \: \dfrac{\pi}{4}  )

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  ) = - sin\: \dfrac{\pi}{4}   - cos\: \dfrac{\pi}{4}

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  ) = - \dfrac{1}{ \sqrt{2} }  - \dfrac{1}{ \sqrt{2} }

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  ) = - \dfrac{2}{ \sqrt{2} }

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  ) = -  \sqrt{2}

:\implies \tt \:  f''(\: \dfrac{7\pi}{4}  )  &lt; 0

:\implies \boxed{ \pink{ \tt \:  f(x) \: is \: maximum \: at \: x \:  = \: \dfrac{7\pi}{4}  }}

:\implies \tt \:  maximum \: value \: is \:     \red{ \bf \: \: f(\: \dfrac{7\pi}{4}  ) }

:\implies \tt \:  f(\: \dfrac{7\pi}{4}  ) =cos\: \dfrac{7\pi}{4}   - sin\: \dfrac{7\pi}{4}

:\implies \tt \:  f(\: \dfrac{7\pi}{4}  ) =cos\: (2\pi \:  - \dfrac{\pi}{4})   - sin\:(2\pi \:  -  \dfrac{\pi}{4}  )

:\implies \tt \:  f(\: \dfrac{7\pi}{4}  ) =  \: cos\: \dfrac{\pi}{4}    +  sin\: \dfrac{\pi}{4}

:\implies \tt \:  f(\: \dfrac{7\pi}{4}  ) = \:   \dfrac{1}{ \sqrt{2} }   +  \dfrac{1}{ \sqrt{2} }

:\implies \tt \:  f(\: \dfrac{7\pi}{4}  ) = \:   \dfrac{2}{ \sqrt{2} }

:\implies \boxed { \pink{ \tt \:  f(\: \dfrac{7\pi}{4}  ) = \:   \sqrt{2} }}

Hence,

\begin{gathered}\begin{gathered}\bf cosx - sinx  \: has \:  \begin{cases} &amp;\sf{minimum \: value \: at \: x \:  = \: \dfrac{3\pi}{4}  } \\ &amp;\sf{maximum \: value \: at \: x \:  = \: \dfrac{7\pi}{4}  } \end{cases}\end{gathered}\end{gathered}

Similar questions