Math, asked by adwaitdharade25, 3 months ago

i The sum to infinity of the GP -3,1,-1/3,1/9... is​

Attachments:

Answers

Answered by Anonymous
4

Given

 \sf \to\:  - 3,1, \dfrac{ - 1}{3} , \dfrac{1}{9} ,

 \sf \to \: first \: term \: (a) =  - 3

 \sf \to \: commom \: ratio(r) =  \dfrac{a_{2}}{a_1}

\sf \to \: commom \: ratio(r) =  \dfrac{  - 1}{3}

Formula

 \sf \to \: S_ \infty  =  \dfrac{a}{1 - r}

Now Put the value on formula

\sf \to \: S_ \infty  =  \dfrac{ - 3}{1 -   \bigg(\dfrac{ - 1}{3} \bigg) }

\sf \to \: S_ \infty  =  \dfrac{ - 3}{1  +    \dfrac{  1}{3}}

\sf \to \: S_ \infty  =  \dfrac{ - 3}{    \dfrac{ 3 +  1}{3}}

\sf \to \: S_ \infty  =  \dfrac{ - 3}{    \dfrac{ 4}{3}}

\sf \to \: S_ \infty  =  \dfrac{ - 3 \times 3}{  4}

\sf \to \: S_ \infty  =  \dfrac{  - 9}{  4}

Answer

\sf \to \: S_ \infty  =  \dfrac{  - 9}{  4}

Similar questions