I want my answer now...
plz...plz..
solve this...
plz... don't spam
Answers
Question:
If sin²Ø + 3 cos²Ø = 4, then show that tanØ =
________________________________
Solution:
sin²Ø + 3 cos²Ø = 4...Given
=> sin²Ø + cos²Ø + 2 cos²Ø = 4
But, sin²Ø + cos²Ø = 1 ... trigonometry identity
=> 1 + 2 cos²Ø = 4
=> cos²Ø = 3/2...(1)
But, sin²Ø = 1 - cos²Ø
=> sin²Ø = 1 - 3/2
=> sin²Ø = -1/2...(2)
Divide equation (2) by equation (1), we get
=> sin²Ø/cos²Ø = (-1/2) / (3/2)
=> sin²Ø/cos²Ø = -1/3
On taking square root of both the sides
=> sinØ/cosØ =
But, sinØ/cosØ = tanØ and = i
tanØ = i/
Hence, proved.
CorrecTion :-
• 7sin²θ + 3cos²θ = 4
Given :-
• 7sin²θ + cos² θ = 4
To Prove :-
• tanθ = 1/√3
SoluTion :-
» 7sin²θ + 3sin²θ = 4
→ 4sin²θ + 3sin²θ + 3cos²θ = 4
→ 4sin²θ + 3 (sin²θ + cos²θ) = 4
→ 4sin²θ + 3 × 1 = 4 [ sin²θ + cos²θ = 1 ]
→ 4sin²θ = 4 - 3
→ 4sin²θ = 1
→ sin²θ = 1/4
★ As we know that,
» cos²θ = (1 - sin²θ)
→ cos²θ = 1 - 1/4
→ cos²θ = 3/4
» tan²θ = sin²θ/cos²θ
→ tan²θ = 1/4 × 4/3
→ tan²θ = 1/3
→ tanθ = √1/3
→ tanθ = 1/√3