Physics, asked by pritisinhabasuadih, 1 month ago

I want question answer

all
class 6​

Attachments:

Answers

Answered by vinodnagar94131
0

Answer:

Given is an Equation:

\sf{}( {c}^{2} - ab) {x}^{2} - 2( {a}^{2} - bc)x + {b}^{2} - ac = 0(c

2

−ab)x

2

−2(a

2

−bc)x+b

2

−ac=0

By comparing given equation with general form of a Quadratic equation which is ;

\implies \sf{}a {x}^{2} + bx + c = 0⟹ax

2

+bx+c=0

Here , a = (c² - ab)

b = -2 ( a² - bc )

c = b² - ac

Now , As it is given that roots of given equation are real and equal .Therefore ,

\implies \sf{}D = 0⟹D=0

By using Discriminant formula ;

\implies \sf{}D = b² - 4 ac⟹D=b

2

−4ac

\begin{gathered} \sf{} \: ( - 2( {a}^{2} - bc {)}^{2} - 4( {c}^{2} - ab)( {b}^{2} - ac) = 0 \\ \\ \sf{}4( {a}^{4} + {b}^{2} {c}^{2} - 2ab {c}^{2} ) - 4( {b}^{2} {c}^{2} - a {c}^{3} - a {b}^{3} + {a}^{2} bc) \\ \\ \sf{}( {a}^{4} + {b}^{2} {c}^{2} - 2ab {c}^{2} ) - ( {b}^{2} {c}^{2} - a {c}^{3} - a {b}^{3} ) + {a}^{2} bc = 0 \\ \\ \sf{} {a}^{4} - 2 {a}^{2} bc + a{c}^{3} + a{b}^{3} - {a}^{2} bc = 0 \\ \\ \sf{} {a}^{4} - 2 {a}^{2} bc + a {c}^{3} + a {b}^{3} - {a}^{2} bc = 0 \\ \\ \sf{}a( {a}^{3} - 2abc + {c}^{3} + {b}^{3} - abc) = 0 \\ \\ \sf{}a( {a}^{3} + {b}^{3} + {c}^{3} - 3abc) = 0 \\ \\ \sf{} \bold{}a = 0 \: \: \: or \: \: \: \: {a}^{3} + {b}^{3} + {c}^{3} = 3abc\end{gathered}

(−2(a

2

−bc)

2

−4(c

2

−ab)(b

2

−ac)=0

4(a

4

+b

2

c

2

−2abc

2

)−4(b

2

c

2

−ac

3

−ab

3

+a

2

bc)

(a

4

+b

2

c

2

−2abc

2

)−(b

2

c

2

−ac

3

−ab

3

)+a

2

bc=0

a

4

−2a

2

bc+ac

3

+ab

3

−a

2

bc=0

a

4

−2a

2

bc+ac

3

+ab

3

−a

2

bc=0

a(a

3

−2abc+c

3

+b

3

−abc)=0

a(a

3

+b

3

+c

3

−3abc)=0

a=0ora

3usydydhr

+b

3

+c

3

=3abc

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \implies \sf{}Hence \: Proved \:⟹HenceProved

Similar questions