Math, asked by kc1234132, 11 months ago

I want the answer fast



The one who will answer will be marked as brainlist answer​

Attachments:

Answers

Answered by Mankuthemonkey01
105

Given : sinA + cosA = √2 cosA

To find : cotA

\rule{50}2

Solution

sinA + cosA = √2 cosA

⇒ sinA = √2 cosA - cosA

⇒ sinA = cosA(√2 - 1)

SHifting cosA to LHS,

\sf\frac{sinA}{cosA} = \sqrt{2}-1\\\\\implies \frac{cosA}{sinA} =\frac{1}{\sqrt{2}-1}\\\\\implies cotA = \frac{1}{\sqrt{2}-1}

(since, cosA/sinA = cotA)

Rationalizing, we get

\sf cotA = \frac{\sqrt{2}+1}{(\sqrt{2}-1)(\sqrt{2}+1)}\\\\\implies cotA = \frac{\sqrt{2}+1}{2 -1}\\\\(using, (a+b)(a-b) = a^2 - b^2)\\\\\implies cotA = \sqrt{2}+1

Hence, cotA = √2 + 1


Anonymous: Awesome answer
Mankuthemonkey01: thank you :)
Answered by Anonymous
60

Question :-

  \star \: \small \: if \:  \sin(A)  +  \cos(A)  =  \sqrt{2}  \cos(A)  \:  \\  \\ find \: the \: value \: of \:  \cot(A)  \\

Answer:-

cot(A) = √2 +1

Step - by - step explanation:-

Used formulas :-

 \boxed{ \star \:  \cot(x)  =  \frac{ \cos(x) }{ \sin(x) } } \\  \\   \boxed{\star \:  \tan(x)  =  \frac{1}{ \cot(x) } }

Solution :-

According to the question,

 \sin(A)  +  \cos(A)  =  \sqrt{2}  \cos(A)  \\  \\ divided \: by \:  \cos(A)  \: on \: both \: sides \\  \\ \rightarrow \:   \frac{ \sin(A) }{ \cos(A)} +  \frac{ \cos(A) }{ \cos(A) }    =  \frac{ \sqrt{2} \cos(A)  }{ \cos(A) }  \\  \\  \rightarrow \: \:  \tan(A)  + 1 =  \sqrt{2 } \:  \\  \\  \rightarrow  \:  \: \tan(A)  =  \sqrt{2}  - 1 \\  \\  \rightarrow \:  \frac{1}{ \cot(A) }  =   \sqrt{2}  - 1  \\  \\  \rightarrow \:  \red{ \boxed{ \cot(A)  =  \frac{1} {\sqrt{2}  - 1}}}

After rationalising ,

Multiply and divided by (√2 +1)

Then we get,

cot(A) = √2 +1


Anonymous: Awesome
Anonymous: great
Similar questions