Physics, asked by annetterodrigues12, 5 hours ago

I want the answer of this question step by step. A humble request not to give direct answers.​

Attachments:

Answers

Answered by ProximaNova
11

\large\underline{\underline{\rm{\red{Given:-}}}}

  • \rm Net \ Resistance \ in \ Series \ combination = 80 \Omega
  • \rm Net \ Resistance \ in \ parallel \ combination = 20 \Omega

\large\underline{\underline{\rm{\red{Solution:-}}}}

Let the resistances are \rm R_1, \ R_2.

We need to find \rm R_1, \ R_2

Consider the series combination, use:

\Large{\star} \red{\boxed{\green{R_s=R_1+ R_2}}}

So , we get

\rm :\longmapsto R_1 + R_2 = 80 \Omega

\rm :\longmapsto R_2 = 80 - R_1

Now , consider the parallel combination, use;

\Large{\star} \red{\boxed{\green{R_p = \left(\dfrac{1}{R_1} + \dfrac{1}{R_2}\right)^{-1}}}}

Hence, you get:

\rm :\longmapsto \dfrac{1}{R_1} + \dfrac{1}{R_2} = \dfrac{1}{20}\Omega

\rm :\longmapsto \dfrac{R_1+R_2}{R_1R_2} = \dfrac{1}{20}

\rm :\longmapsto \dfrac{R_1R_2}{R_1+R_2} = 20

\rm :\longmapsto \dfrac{R_1R_2}{80} = 20

\rm :\longmapsto R_1 R_2 = 1600

Put the value of \rm R_2 to solve the equation in 1 variable

\rm :\longmapsto R_1(80-R_1) = 1600

\rm :\longmapsto 80R_1 - R_1^2 = 1600

\rm :\longmapsto R_1^2 - 80R_1 + 1600 = 0

\rm :\longmapsto (R_1 - 40)^2 = 0

{\boxed{\boxed{\rm :\longmapsto R_1 = 40 \Omega}}}

\boxed{\boxed{\rm :\longmapsto R_2 = 40 \Omega}}

Similar questions