Math, asked by vmanjula459, 4 months ago

I want the answer with (with formula) clarity ​

Attachments:

Answers

Answered by PharohX
2

GIVEN :-

  \sf \: A  \: point  \: (x,y) \:  is  \: in \:  equidistant \:    from  \: two   \\  \sf\: points \:  (a+b , b-a)  \: and \:  (a-b , a+b )

TO PROOF :-

 \rm \: bx \:  =  \: ay

PROOF :-

 \sf \: Distance \:  formula  =  \sqrt{( x_{2} -x_{1}  ) {}^{2} - ( y_{2} -y_{1} ) {}^{2} }

 \sf \:1  \star  \: condition

 \sf \: x_{1} = x \:  \:  \:  \:  \:  \:  \:  \:  \: \:  y_{1} = y \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \: x_{2} = (a + b . \: b - a) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  y_{2} = (a - b \: .a + b) \\

 \sf \: Distance \:  formula  =  \sqrt{( x_{2} -x_{1}  ) {}^{2} - ( y_{2} -y_{1} ) {}^{2} }  \\   \\     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\sf = \sqrt{(a + b - x) {}^{2} - (b - a - y) {}^{2}  }  \:  \:  \: .......(1)

 \sf \: similarly  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \sf \: 2 \star \: condition \:

 \sf \: Distance \:  formula  =  \sqrt{( x_{2} -x_{1}  ) {}^{2} - ( y_{2} -y_{1} ) {}^{2} }  \\   \\     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\sf = \sqrt{(a  -  b - x) {}^{2} - (a  + b - y) {}^{2}  }  \:  \:  \: .......(2)

 \sf \: According \:  \:  to  \:  \: the \:  \:  question

 \sf \: distance \:  \: of \:  \: (x.y) \: from \:  \: given \: point \: are \: equal

\sf \sqrt{(a + b - x) {}^{2} - (b - a - y) {}^{2}  }  =  \sqrt{(a - b - x) {}^{2}  - (a + b - y) {}^{2} }  \\  \\  \sf \: squaring \:  \: both \: sides \\  \\  \sf \implies\: ( {a + b - x)}^{2}  - ( {b - a - y)}^{2}  = (a - b - x) {}^{2}  - (a + b - y) {}^{2} \\  \\  \sf  \: appling \: ( {x}^{2}  -  {y}^{2} ) = (x + y)(x - y) \\  \\    \implies\sf\big[a + b - x +  b - a - y]\big[a + b - x  - b + a  + y] = \big[a  - b - x + a + b - y]\big[a  -  b - x  -  a  -  b  +  y] \\  \\  \sf \implies \: (2b - x - y)(2a - x + y) = (2a - x   -  y)( - 2b - x + y)

Similar questions