Math, asked by vishakakhengare80190, 10 months ago

I want the prove please help me​

Attachments:

Answers

Answered by anshi60
10

hope its help.........

Attachments:
Answered by Anonymous
14

 \huge{ \underline{ \underline{ \green{ \sf{ Detailed \: Answer :}}}}}

• To prove :

 \frac{ \tan {}^{3} (x) }{1 +  \tan {}^{2} (x) }  +  \frac{ \cot {}^{3} (x) }{1 +  \cot {}^{2} (x) }  =  \sec(x)  \cosec(x)  - 2 \sin( x )  \cos(x)

proof :

LHS :

 \frac{ \tan {}^{3} (x) }{1 +  \tan {}^{2} (x) }  +  \frac{ \cot {}^{3} (x) }{1 +  \cot {}^{2} (x) }

 =  \frac{ \frac{ \sin {}^{3} (x) }{ \cos {}^{3} (x) } }{1 +  \frac{ \sin {}^{2} (x) }{ \cos {}^{2} (x) } }  +  \frac{ \frac{ \cos {}^{3} (x) }{ \sin {}^{3} (x) } }{1 +  \frac{ \cos {}^{2} ( x ) }{ \sin {}^{2} ( x ) } }

 =  \frac{ \frac{ \sin {}^{3} (x) }{ \cos {}^{ 3} (x) }  \times  \cos {}^{2} (x) }{ \cos {}^{2} (x)  +  \sin {}^{2} (x) }  +  \frac{ \frac{ \cos {}^{3} (x) }{ \sin {}^{3} (x) } \times  \sin {}^{2} (x)  }{ \cos {}^{2} (x)  +  \sin {}^{2} (x) }

since , sin ²x + cos²x = 1

 =  \frac{ \sin {}^{3} (x) }{ \cos(x) }  +  \frac{ \cos {}^{3} (x) }{ \sin {}^{} (x) }

 =  \frac{ \sin {}^{4} (x) +  \cos {}^{4} (x)  }{ \cos(x)  \sin(x) }

 =  \frac{ (\sin {}^{2} (x)  +  \cos {}^{2} (x)) {}^{2}   - 2 \sin {}^{2} (x)  \cos {}^{2} (x) }{ \cos(x) \sin(x)  }

 =  \frac{1 - 2 \sin {}^{2} (x)  \cos {}^{2} (x) }{ \sin(x) \cos(x)  }

 =  \frac{1}{ \sin(x) \cos(x)  }  -  \frac{2 \sin {}^{2} (x) \cos {}^{2} (x)  }{ \sin( x )  \cos(x) }

 =  \sec(x)  \csc(x)  - 2 \sin(x)  \cos(x)

 = RHS

\huge{\bold{ Hence proved }}

Similar questions