Math, asked by Haquemorziul69, 19 days ago

I want the solution of both sum​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-2}}

Given that, in triangle ABC

\rm \: a \: cosA \:  =  \: b \: cosB \\

We know, By sine law, we have

\boxed{\rm{  \: \frac{a}{sinA}  =  \frac{b}{sinB}  =  \frac{c}{sinC}  = k \: }} \\

So, from this we have

\rm \: a = k \: sinA \\

\rm \: b = k \: sinB \\

So, on substituting these values, we get

\rm \: k \: sinA \: cosA \:  =  \: k \: sinB \: cosB \\

\rm \:  \: sinA \: cosA \:  =  \: \: sinB \: cosB \\

On multiply and divide by 2, we get

\rm \:  2\: sinA \: cosA \:  =  \: 2\: sinB \: cosB \\

\rm \: sin2A = sin2B \\

\rm \: sin2A -  sin2B = 0 \: \\

We know

\boxed{\rm{  \:\rm \:sinx - siny =  2cos\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{x - y}{2} \bigg]  \:  \: }}\\

So, using this result, we get

\rm \: 2cos(A + B) \: sin(A - B) = 0 \\

\rm \: cos(A + B)  = 0\: \: or \:  \:  sin(A - B) = 0 \\

\rm\implies \:A + B = \dfrac{\pi}{2} \:  \: or \:  \: A - B = 0 \\

\rm\implies \:A + B = \dfrac{\pi}{2} \:  \: or \:  \: A  =  B \\

\rm\implies \: \triangle \: ABC \: is \: isosceles \: or \: right \: angled \: triangle \\

\large\underline{\sf{Solution-3}}

Given that, in triangle ABC, a = 13 cm, b = 14 cm and c = 15 cm

We know,

Semi-perimeter (s) of a triangle with sides a, b and c, is given by

\boxed{\rm{  \:s \:  =  \:  \frac{a + b + c}{2} \:  \: }} \\

So, on substituting the values, we get

\rm \: s \:  =  \:  \dfrac{13 + 14 + 15}{2}  \:  \\

\rm \: s \:  =  \:  \dfrac{42}{2}  \:  \\

\rm\implies \:s \:  =  \: 21 \: cm \:  \\

Now, we know

\rm \: tan\dfrac{B}{2} =  \sqrt{ \dfrac{(s - a)(s - c)}{s(s - b)} }  \\

So, on substituting the values, we get

\rm \: tan\dfrac{B}{2} =  \sqrt{ \dfrac{(21 - 13)(21 - 15)}{21(21 - 14)} }  \\

\rm \: tan\dfrac{B}{2} =  \sqrt{ \dfrac{(8)(6)}{21(7)} }  \\

\rm \: tan\dfrac{B}{2} =  \sqrt{ \dfrac{(8)(2)}{(7)(7)} }  \\

\rm\implies \:\rm \: tan\dfrac{B}{2} =  \dfrac{4}{7}   \\

\rule{190pt}{2pt}

Additional Information :-

\rm \: tan\dfrac{A}{2} =  \sqrt{ \dfrac{(s - b)(s - c)}{s(s - a)} }  \\

\rm \: tan\dfrac{C}{2} =  \sqrt{ \dfrac{(s - b)(s - a)}{s(s - c)} }  \\

Answered by diliptalpada66
1

Step-by-step explanation:

 \boxed{ \underline{\underline{\text{Question 3}}}}

 \\  \\  \tt \: s =\frac{a+b+c}{2}=\frac{13+14+15}{2}=21

 \begin{array}{l} \tt( s - a )=21-13=8  \\  \\  \tt ( s - b )=21-14=7  \\  \\  \tt( s - c )=21-15=6 \end{array}

 \\  \\  \color{orangered} \tt\tan \frac{B}{2}=\frac{\sin \frac{B}{2}}{\cos \frac{B}{2}}=\frac{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}=\frac{1}{2}

Similar questions