Math, asked by DigitalIndia, 11 months ago

I want the solution right now plzz help me


1 ÷ (1-a)(1-b) + a^2 ÷ (1-a)(b-a) - b^2 ÷ (b - 1)(a - b)


Options are :-


a.1


b. 0


c. 2


d. 5

Answers

Answered by Anonymous
37

\textbf{\underline{\underline{According\:to\:the\:Question}}}

\tt{\rightarrow\dfrac{1}{(1-a)(1-b)}+\dfrac{a^2}{(1-a)(b-a)}-\dfrac{b^2}{(b-1)(a-b)}}

\tt{\rightarrow\dfrac{(b-a)+a^2(1-b)-b^2(1-a)}{(1-a)(1-b)(b-a)}}

\tt{\rightarrow\dfrac{b-a+a^2-a^2b-b^2+ab^2}{(1-a)(1-b)(b-a)}}

\tt{\rightarrow\dfrac{(b-a)+(a^2-b^2)+ab(b-a)}{(1-a)(1-b)(b-a)}}

\tt{\rightarrow\dfrac{(b-a)[1-a-b+ab]}{(1-a)(1-b)(b-a)}}

\tt{\rightarrow\dfrac{(b-a)[1(1-a)-b(1-a)]}{(1-a)(1-b(b-a)}}

\tt{\rightarrow\dfrac{(b-a)(1-a)(1-b)}{(1-a)(1-b)(b-a)}}

★After cancelling we get :-

= 1

\Large{\boxed{Hence\;correct\;option\;is\;(a)}}

Answered by Anonymous
30

\huge{\mathfrak{\underline{</p><p><strong>Answer:</strong></p><p>}}}

 \frac{1 }{(1 - a)(1 - b)}  +  \frac{ {a}^{2} }{(1 - a)(b - a)} -  \frac{ {b}^{2} }{(b - 1)(a - b)}  \\  \\  \frac{(b - a) +  {a}^{2}(1 - b) -  {b}^{2}(1 - a)  }{(1 - a)(1 - b)(b - a)}  \\  \\  \frac{b - a +  {a}^{2} -  {a}^{2}b -  {b}^{2} + a {b}^{2}    }{(1 - a)(1 - b)(b - a)}  \\  \\  \frac{(b - a)( {a}^{2} -  {b}^{2}) + ab(b - a)  }{(1 - a)(1 - b)(b - a)}  \\  \\  \frac{(b - a)(1 - a - b  + ab)}{(1 - a)(1 - b)(b - a)}  \\  \\  \frac{(b - a)(1(1 - a) - b(1 - a))}{(1 - a)(1 - b)(b - a)}  \\  \\  \frac{(b - a)(1 - a)(1 - b)}{(1 - a)(1 - b)(b - a)} \\  \\  = 1

\huge{\boxed{\sf{1}}}

Similar questions