Math, asked by prathameshkolekar07, 9 months ago

I want this question solved step by step ​

Attachments:

Answers

Answered by BrainlyPopularman
10

QUESTION :

Differentiate the following w.r.t. 'x' –

 \bf \implies { \sin}^{ - 1}  \left( \sqrt{ \dfrac{1 +  {x}^{2} }{2}}  \right)

ANSWER :

GIVEN :

 \bf \implies { \sin}^{ - 1}  \left( \sqrt{ \dfrac{1 +  {x}^{2} }{2}}  \right)

TO FIND :

• Differentiate form = ?

SOLUTION :

• Let the function –

 \bf \implies  y = { \sin}^{ - 1}  \left( \sqrt{ \dfrac{1 +  {x}^{2} }{2}}  \right)

• Now Differentiate with respect to 'x' –

 \bf \implies \dfrac{dy}{dx}  = \dfrac{ d  \left \{{ \sin}^{ - 1}  \left( \sqrt{ \dfrac{1 +  {x}^{2} }{2}}  \right)  \right \}}{dx}

• We know that –

 \bf \implies  \dfrac{ d  \left \{{ \sin}^{ - 1}(x)  \right \}}{dx} =  \dfrac{1}{ \sqrt{1 +  {x}^{2} } }

 \bf \implies \dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{1 +  { \left( \sqrt{\dfrac{1 +  {x}^{2} }{2}} \right)}^{2} } } \times  \dfrac{1}{2{{\left( \sqrt{\dfrac{1 +  {x}^{2} }{2}} \right)}} } \times  \dfrac{2x}{2}

 \bf \implies \dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{1 +  { \left( \sqrt{\dfrac{1 +  {x}^{2} }{2}} \right)}^{2} } } \times  \dfrac{x}{ \sqrt{2( 1 + {x}^{2} )} }

 \bf \implies \dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{1 +   \dfrac{1 +  {x}^{2} }{2} } } \times  \dfrac{x}{ \sqrt{2( 1 + {x}^{2} )} }

 \bf \implies \dfrac{dy}{dx}  = \dfrac{1}{ \sqrt{ \dfrac{2 + 1 +{x}^{2}}{2} } } \times  \dfrac{x}{ \sqrt{2( 1 + {x}^{2} )} }

 \bf \implies \dfrac{dy}{dx}  = \dfrac{ \sqrt{2} }{ \sqrt{3+{x}^{2}} } \times  \dfrac{x}{ \sqrt{2}  \sqrt{( 1 + {x}^{2} )} }

 \bf \implies \large {  \boxed{  \bf\dfrac{dy}{dx}  =   \dfrac{x}{ \sqrt{( 1 + {x}^{2} )(3 +  {x}^{2} )}}}}

Similar questions