I} what is the 5 tan o = 3, then what 3 value of 5 sino-3 clo asino +3 colo 2 5 -3
Answers
Given,
Given,5tanθ=3
Given,5tanθ=3∴tanθ=
Given,5tanθ=3∴tanθ= 5
Given,5tanθ=3∴tanθ= 53
Given,5tanθ=3∴tanθ= 53
Given,5tanθ=3∴tanθ= 53
Given,5tanθ=3∴tanθ= 53 Now,
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ =
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ = 4tanθ+3
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ = 4tanθ+35tanθ−3
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ = 4tanθ+35tanθ−3
Given,5tanθ=3∴tanθ= 53 Now,4sinθ+3cosθ5sinθ−3cosθ = 4tanθ+35tanθ−3 [dividing numerators and denominator by cosθ]
Answer:
Given,
5tanθ=3
∴tanθ=
5
3
Now,
4sinθ+3cosθ
5sinθ−3cosθ
=
4tanθ+3
5tanθ−3
[dividing numerators and denominator by cosθ]
=
4(
5
3
)+3
5(
5
3
)−3
=
5
12
+3
3−3
=
5
12
+3
0
=0
∴
4sinθ+3cosθ
5sinθ−3cosθ
=0
Was this answer helpful?
upvote
60
downvote
4
SIMILAR QUESTIONS
star-struck
Prove that (
1+sin θ+cosθ
1+sin θ−cosθ
)
2
=
1+cosθ
1−cosθ
Hard
View solution
>
If tanθ=
y
x
, then the value of (
xsinθ−ycosθ
xsinθ+ycosθ
)