Math, asked by pdeka1196, 3 months ago

I will be grateful if you answer me this question ...please ​

Attachments:

Answers

Answered by Anonymous
29

Step by step explanation :-

Given :-

 \dfrac{x - 3}{2}  -  \dfrac{x - 1}{5}  =  \dfrac{2x - 3}{5}

Solution :-

LCM of 2, 5 IS 10 in LHS

 \dfrac{(x - 3)  5 - (x - 1)  2}{10}  =  \dfrac{2x - 3}{5}

 \dfrac{5x - 15 - (2x - 2)}{10}  =  \dfrac{2x - 3}{5}

 \dfrac{5x - 15 - 2x + 2}{10}  =  \dfrac{2x - 3}{5}

 \dfrac{3x - 13}{10}  =  \dfrac{2x - 3}{5}

 \dfrac{3x - 13}{2}  = 2x - 3

Do Cross multiplication

3x - 13 = 2(2x - 3)

3x - 13 = 4x - 6

3x - 4x = 13 - 6

 - x = 7

x =  \:  - 7

So, the value of x is -7

Verification :-

Substitute value of x It should be equal to LHS = RHS

 \dfrac{x - 3}{2}  -  \dfrac{x - 1}{5}  =  \dfrac{2x - 3}{5}

x = -7

\dfrac{-7 -3}{2} - \dfrac{-7 - 1 }{5} = \dfrac{2(-7) -3}{5}

\dfrac{-10}{2} - \dfrac{-8 }{5} = \dfrac{-14 -3 }{5}

\dfrac{-5}{1} - \dfrac{-8}{5} = \dfrac{-17}{5}

\dfrac{-5}{1} + \dfrac{8}{5} = \dfrac{-17}{5}

\dfrac{-25 +8}{5} = \dfrac{-17}{5}

\dfrac{-17}{5} = \dfrac{-17}{5}

LHS = RHS

Hence verified!

Answered by hemanji2007
59

\textbf{\large{\underline{\pink{ Question: }}}}

 \dfrac{x -  3}{2}  -  \dfrac{x - 1}{5}  =  \dfrac{2x - 3}{5}

\textbf{\large{\underline{\orange{ Solution: }}}}

now \: we \: have \: to \: take \: lcm \: of \: 2 \: and \: 5 \\ lcm \: of \: 2 \: and \: 5 \: is \: 10

 \dfrac{5x - 15 - (2x - 2)}{10}

 \dfrac{5x - 15 - 2x + 2}{10}  =  \dfrac{2x - 3}{5}

 \dfrac{3x - 13}{10}  =  \dfrac{2x - 3}{5}

 \dfrac{3x - 13}{10}  \times 5 =  2x - 3

 \dfrac{3x - 13}{2}  = 2x - 3

3x - 13 = 2(2x - 3)

3x - 13 = 4x - 6

3x - 4x = 13 - 6

-x = 7

\textbf{\large{\underline{\blue{ Answer: }}}}

x=-7

Similar questions