I will mark BRAINLIEST..............
__________________________
Find four numbers in AP,whose sum is 20 and sum of their squares is 180.
please give a right answer........
Answers
Answered by
0
hey mate here is ur answer
let the number be a - 3d, a-d, a+d and a+3d.
thus,
the sum =4a
=>4a=20
=>a=5
also
(5-3d)²+(5+3d)²+(5+d)²+(5-d)=180
=>2(25+9d²)+2(25+d²)=180
=>100+20d²=180
=>5+d²=9
=>d²=4
=>d=±2
hence numbers are
-1,3,7,11
or
11,7,3,-1
alternative method:
let the no be a,a+d,a+2d,a+3d
thus,
a+a+d+a+2d+a+3d=20
4a+6d=20
2a+3d=10
4a²+9d²+12ad=100
4a²+9d²-100=-12ad (equ..1)
also,
a²+(a+d)²+(a+2d)²+(a+3d)²=180
a²+(a²+2ad+d²)+(a²+4ad+4d²)+(a²+6ad+9d²)=180
4a²+12ad+14d²=180
4a²+14d²-180=-12ad (equ..2)
thus,from equ 1 and equ 2
4a²+9d²-100=4a²+14d²-180
5d²=80
d²=16
d=±4
and thus
2a+12=10
2a=-2
a=-1
and hence No's
are -1,3,7,11
let the number be a - 3d, a-d, a+d and a+3d.
thus,
the sum =4a
=>4a=20
=>a=5
also
(5-3d)²+(5+3d)²+(5+d)²+(5-d)=180
=>2(25+9d²)+2(25+d²)=180
=>100+20d²=180
=>5+d²=9
=>d²=4
=>d=±2
hence numbers are
-1,3,7,11
or
11,7,3,-1
alternative method:
let the no be a,a+d,a+2d,a+3d
thus,
a+a+d+a+2d+a+3d=20
4a+6d=20
2a+3d=10
4a²+9d²+12ad=100
4a²+9d²-100=-12ad (equ..1)
also,
a²+(a+d)²+(a+2d)²+(a+3d)²=180
a²+(a²+2ad+d²)+(a²+4ad+4d²)+(a²+6ad+9d²)=180
4a²+12ad+14d²=180
4a²+14d²-180=-12ad (equ..2)
thus,from equ 1 and equ 2
4a²+9d²-100=4a²+14d²-180
5d²=80
d²=16
d=±4
and thus
2a+12=10
2a=-2
a=-1
and hence No's
are -1,3,7,11
Anonymous:
except ur mother tongue
Answered by
1
Answer:
4.1,4.7,5.3,5.9
Step-by-step explanation:
select the terms as a-3d , a-d , a+d , a+3d their sum is 20
so on solving 4a = 20 i.e a = 5
then sum of their squares is 180
so open all the terms using (a+b)^2
a^2 + 9d^2 - 6ad + a^2 + d^2 - 2ad +a^2 + d^2 + 2ad + a^2 + 9d^2 + 6ad =180
ad terms will cancel out each other
add a^2 separately and d^2 separately 4a^2 + 20d^2 = 180
putting obtained value of a 4*5^2 +20d^2 =180
20d^2 = 180 - 100
d^2 = 80/20
d=+2 or -2
in selected terms put a and d
5-6 , 5-2 , 5+2 , 5+6
they are -1,3,7,11 or 11,7,3,-1
THANK YOU ,PLEASE MARK IT BRAINLIEST IF YOU LIKED IT ...
Similar questions