Math, asked by Brightstarz, 11 months ago

I will mark BRAINLIEST for the first correct answer. Plz solve it fast..........

Attachments:

Answers

Answered by Anonymous
10

Answer

 \sf \dfrac{ {x}^{2}  +  {y}^{2} }{ {x}^{2}  -  {y}^{2} }

Given

  •  \sf{\tan \theta =  \frac{x}{y} } \\

To Find

The value of

  •  \sf \dfrac{x \sin \theta + y \cos \theta}{x \sin \theta - y \cos \theta}

Solution

Taking the given value

 \sf  \tan \theta = \dfrac{x}{y}

 \implies \sf\dfrac{ \sin \theta}{ \cos \theta} =  \dfrac{x}{y}

 \implies \sf\sin \theta =  \dfrac{x}{y}  \cos \theta

Now using the value of sinθ in the expression which is given to find :

 \sf \longrightarrow \dfrac{x \times   \frac{x}{y}\cos \theta + y \cos \theta}{x \times  \frac{x}{y}  \cos \theta  -  y\cos \theta}

  \sf\longrightarrow \dfrac{  \dfrac{ {x}^{2}  \cos \theta +  {y}^{2} \cos \theta }{ y}  }{ \dfrac{{x}^{2}  \cos \theta -  {y}^{2}  \cos \theta}{y} }

  \longrightarrow \sf \dfrac{ \cos \theta( {x}^{2} +  {y}^{2}  )}{ \cos \theta( {x}^{2}  -  {y}^{2}) }

 \sf \longrightarrow \dfrac{ {x}^{2}  +  {y}^{2} }{ {x}^{2}  - y {}^{2} }

Answered by Saby123
10

>>

 \tt{\huge{\purple{ ............ }}}

QUESTION :

I will mark BRAINLIEST for the first correct answer. Plz solve it fast..........

 \tan( \theta ) = \dfrac{X}{Y} then\;  find \:\dfrac{x \sin ( \theta ) + y \cos ( \theta ) }{x \sin ( \theta ) - y \cos ( \theta ) }

CONCEPT USED :

Ratio And Proportion , Trigonometric Identities

SOLUTION :

 \tan( \theta ) = \dfrac{X}{Y} \\ \\ \dfrac{ \sin ( \theta ) }{ \cos (\theta ) } = \dfrac{X}{Y}

So :

 Suppose \: \sin ( \theta ) = X \: And \: \cos ( \theta ) = Y

Note that the above sentence can be written by ratio and proportion.

So,   \dfrac{x \sin ( \theta ) + y \cos ( \theta ) }{x \sin ( \theta ) - y \cos ( \theta ) }

  => \dfrac { { x } ^ 2 + { y } ^ 2}{{ x } ^ 2 - { y } ^ 2}........ ( A )

Similar questions