Math, asked by iamsophie, 10 months ago

I will mark brainliest plss answer ;if a and b are rational numbers and √7+√3/2√7-3√3=a-b√21 then find the values of a and b

Answers

Answered by DaIncredible
4

Formula used :

(a + b)(a - b) = -

(a)² = a

Step by step explanation :

L.H.S.

 \frac{ \sqrt{7}  +  \sqrt{3} }{ \sqrt{7} - 3 \sqrt{3}  }  \\

Rationalizing the denominator we get:

 =  \frac{ \sqrt{7}  +  \sqrt{3} }{ \sqrt{7}  - 3 \sqrt{3} }  \times  \frac{ \sqrt{7}  + 3 \sqrt{3} }{ \sqrt{7}  + 3 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{7}( \sqrt{7}  + 3 \sqrt{3}  ) +  \sqrt{3}( \sqrt{7}   + 3 \sqrt{3} )}{( \sqrt{7}  - 3 \sqrt{3} )( \sqrt{7} + 3 \sqrt{3} ) }  \\  \\  =  \frac{7 + 3 \sqrt{21} +  \sqrt{21}   + 3 \sqrt{ {3}^{2} } }{ {( \sqrt{7}) }^{2}   -  {(3 \sqrt{3} )}^{2} }  \\  \\  =  \frac{7 + 3 \times 3 + 4 \sqrt{21} }{7 - 27}  \\  \\  =  \frac{7 + 9 + 4 \sqrt{21} }{ - 20}  \\  \\  =  \frac{ - 16 - 4 \sqrt{21} }{20}  \\  \\  =   \frac{ - 4 -  \sqrt{21} }{5}

Equating L.H.S and R.H.S we get :

 -  \frac{4}{5}  -  \frac{ \sqrt{21} }{5}  = a  -  b \sqrt{21}  \\  \\  ( -  \frac{4}{5} ) -  \frac{1}{5} . \sqrt{21}  = a - b \sqrt{21}  \\  \\  \bf a =  -  \frac{4}{5}  \:  \: and \:  \: b =  \frac{1}{5}

Answered by Anonymous
1

Formula used :

(a + b)(a - b) = a² - b²

(√a)² = a

Step by step explanation :

L.H.S.

 \frac{ \sqrt{7}  +  \sqrt{3} }{ \sqrt{7} - 3 \sqrt{3}  }  \\

Rationalizing the denominator we get:

 =  \frac{ \sqrt{7}  +  \sqrt{3} }{ \sqrt{7}  - 3 \sqrt{3} }  \times  \frac{ \sqrt{7}  + 3 \sqrt{3} }{ \sqrt{7}  + 3 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{7}( \sqrt{7}  + 3 \sqrt{3}  ) +  \sqrt{3}( \sqrt{7}   + 3 \sqrt{3} )}{( \sqrt{7}  - 3 \sqrt{3} )( \sqrt{7} + 3 \sqrt{3} ) }  \\  \\  =  \frac{7 + 3 \sqrt{21} +  \sqrt{21}   + 3 \sqrt{ {3}^{2} } }{ {( \sqrt{7}) }^{2}   -  {(3 \sqrt{3} )}^{2} }  \\  \\  =  \frac{7 + 3 \times 3 + 4 \sqrt{21} }{7 - 27}  \\  \\  =  \frac{7 + 9 + 4 \sqrt{21} }{ - 20}  \\  \\  =  \frac{ - 16 - 4 \sqrt{21} }{20}  \\  \\  =   \frac{ - 4 -  \sqrt{21} }{5}

Equating L.H.S and R.H.S we get :

 -  \frac{4}{5}  -  \frac{ \sqrt{21} }{5}  = a  -  b \sqrt{21}  \\  \\  ( -  \frac{4}{5} ) -  \frac{1}{5} . \sqrt{21}  = a - b \sqrt{21}  \\  \\  \bf a =  -  \frac{4}{5}  \:  \: and \:  \: b =  \frac{1}{5}

Similar questions