I will mark the first answer brainliest so please do it fast
Attachments:
Answers
Answered by
22
Given, EFA is a right angled triangle with angle EFA = 90° and FGB is an equilateral triangle. Find y - 2x .
solution:
--------------
since ,angle EFA = 90°
since,we know that each angles of equilateral ∆ = 60°. so then
angle BFG = angle FBG= angle FGB = 60°
in ∆ CFG :
----------------
x + 60° + 92° = 180°
x + 152° = 180°
x = 28°
since ,angle x = 28°
so then, angle BFC = (60 - x)°
since , angle EFA = 90°
angle EFB + angle BFC = 90°
y + (60° - x ) = 90°
y + (60 - 28°) = 90°
y +32° = 90° => y = 58°
therefore ,
y - 2x = 58° - 2 (28° )
y - 2x = 58° - 56° = 2°
Answer : y - 2x = 2°
-----------------------------------------------------
solution:
--------------
since ,angle EFA = 90°
since,we know that each angles of equilateral ∆ = 60°. so then
angle BFG = angle FBG= angle FGB = 60°
in ∆ CFG :
----------------
x + 60° + 92° = 180°
x + 152° = 180°
x = 28°
since ,angle x = 28°
so then, angle BFC = (60 - x)°
since , angle EFA = 90°
angle EFB + angle BFC = 90°
y + (60° - x ) = 90°
y + (60 - 28°) = 90°
y +32° = 90° => y = 58°
therefore ,
y - 2x = 58° - 2 (28° )
y - 2x = 58° - 56° = 2°
Answer : y - 2x = 2°
-----------------------------------------------------
Answered by
6
Given that ΔFGB is an equilateral triangle
∠BGF =∠GBF = ∠GFB = 60º
FInd x:
Sum of angles in a triangle is 180º
∠CFG + ∠FGC + ∠GCF = 180
x + 60 + 92= 180
x + 152 = 180
x = 28º
FInd ∠BFC:
Recall that ∠BFG is 60º
∠BFC + ∠CFG = ∠BFG
∠BFC + 28 = 60
∠BFC= 32º
Find y:
∠EFA is a 90º (Given)
∠EFB + ∠BFC = ∠EFA
y + 32 = 90
y = 58º
FInd y - 2x:
We have found that x = 28º and y = 58º
y - 2x = 58 - 2(28)
y - 2x = 58 - 56
y - 2x = 2
Answer: 2
Attachments:
bblbubbly1:
I must mark your answer brainliest but you was late
Similar questions