I WILL MARK YOU AS BRILLIANT IF YOU ANSWER THIS Evaluate 99 x 102 using suitable identity
Answers
Answered by
2
Answer:
It is known that,
(a+b)3=a3+b3+3ab(a+b)and(a−b)3=a3−b3−3ab(a−b)
(i) (99)3 = (100 − 1)3
= (100)3 − (1)3 − 3(100) (1) (100 − 1)
= 1000000 − 1 − 300(99)
= 1000000 − 1 − 29700
= 970299
(ii) (102)3 = (100 + 2)3
= (100)3 + (2)3 + 3(100) (2) (100 + 2)
= 1000000 + 8 + 600 (102)
= 1000000 + 8 + 61200
= 1061208
(iii) (998)3= (1000 − 2)3
= (1000)3 − (2)3 − 3(1000) (2) (1000 − 2)
= 1000000000 − 8 − 6000(998)
= 1000000000 − 8 − 5988000
= 1000000000 − 5988008
= 994011992
Step-by-step explanation:
and plz follow me
Answered by
2
Here is your answer dude.
99 × 102
=(100-1) (100+2)
=10000+200-100-2
=10098 ----------Ans.
Similar questions