Math, asked by VasuBhagy, 10 months ago

I will mark you as the brainliest if you answer it correctly ​

Attachments:

Answers

Answered by BrainlyPopularman
56

Question :

If  \rm \:  \: \tan(A - B)  =  \dfrac{1 }{ \sqrt{ 3} }  \:  \:  and  \rm \:  \: \tan(A  +  B)  =  \sqrt{ 3}  \:  \:  , then find A and B .

ANSWER :

GIVEN :

 \\  \:  \: {\huge {.}} \rm \:  \: \tan(A - B)  =  \dfrac{1 }{ \sqrt{ 3} }  \:  \:  \\

 \\  \:  \: {\huge {.}} \rm \:  \: \tan(A  +  B)  = \sqrt{ 3}   \:  \:  \\

TO FIND :

Value of 'A' and 'B' = ?

SOLUTION :

We know that –

 \\  \:  \: {\huge {.}} \rm \:  \: \tan( {30}^{ \circ} )  =  \dfrac{1 }{ \sqrt{ 3} }  \:  \:  \\

 \\  \:  \: {\huge {.}} \rm \:  \: \tan( {60}^{ \circ} )  = \sqrt{ 3}   \:  \:  \\

• Now –

 \\   \implies \rm  \tan(A - B)  =  \dfrac{1 }{ \sqrt{ 3} }  \:  \:  \\

 \\   \implies \rm  \tan(A - B)  =  \tan( {30}^{ \circ} )  \:  \:  \\

 \\   \implies \rm  A - B  =   {30}^{ \circ}  \:  \: \:  \:  \:  -  -  -  - eq.(1)  \\

• And –

 \\  \implies \rm \tan(A  +  B)  = \sqrt{ 3}   \:  \:  \\

 \\  \implies \rm \tan(A  +  B)  = \tan( {60}^{ \circ} )   \:  \:  \\

 \\  \implies \rm A  +  B =  {60}^{ \circ}   \:  \:  \:  \: \:   -  -  -  - eq.(2) \\

• Add eq.(1) and eq.(2) –

 \\  \implies \rm A   -   B +  A  +  B = {30}^{ \circ} +  {60}^{ \circ}    \\

 \\  \implies \rm 2A   = {90}^{ \circ}   \\

 \\  \longrightarrow \:  \:  \large{ \boxed{  \rm A   = {45}^{ \circ}  }}\\

• Using eq.(2) –

 \\  \implies \rm  {45}^{ \circ}   +  B =  {60}^{ \circ}    \\

 \\  \implies \rm   B =  {60}^{ \circ}  -  {45}^{ \circ}    \\

 \\  \longrightarrow \:  \:  \large{ \boxed{  \rm B  = {15}^{ \circ}  }}\\

Answered by Anonymous
9

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

  \dagger{\sf{ \:  \:  \:  tan(A + B) =  \sqrt{3} }}  \\

  \dagger{\sf{ \:  \:  \:  tan(A-  B) =   \frac{1}{ \sqrt{3} }  }} \\

{\bf{\blue{\underline{To\:Find:}}}}

  \dagger{\sf{ \:  \:  \:  A \: and \:  B}} \\ \\

{\bf{\blue{\underline{Now:}}}}

 : \implies{\sf{ tan(A + B) =  \sqrt{3} }} \\ \\

 : \implies{\sf{ tan(A + B) =  tan60 \degree}} \\ \\

 : \implies{\sf{ \cancel{ tan}(A + B) =   \cancel{tan}60 \degree }} \\ \\

 : \implies{\sf{ A + B= 60 \degree.......(1) }} \\ \\

_________________________________

 : \implies{\sf{ tan(A - B) =   \frac{1}{ \sqrt{3} }  }} \\ \\

 : \implies{\sf{ tan(A -B) =  tan30 \degree}} \\ \\

 : \implies{\sf{ \cancel{ tan}(A - B) =   \cancel{tan}30 \degree }} \\ \\

 : \implies{\sf{ A -B= 30 \degree.......(2) }} \\ \\

___________________________________

From (1) and (2),

A + B = 60°

A - B. = 30°

_________

2A. = 90°

_________

 \longrightarrow{\sf{ A =  \frac{90 \degree}{2} }} \\  \\

 \longrightarrow{\sf{ A =  45 \degree }} \\  \\

Put the Value of A in eq (1),

 :\implies{\sf{ A  + B= 60 \degree }} \\  \\

  :\implies{\sf{ 45 \degree + B= 60 \degree  }} \\  \\

  :\implies{\sf{ B= 60 \degree-45\degree  }} \\  \\

  :\implies{\sf{ B= 15\degree  }} \\  \\

  \dagger \:  \: {  \boxed{  \sf{ \purple{Hence \: A = 45 \degree \: and \: B= 15 \degree  }}}} \\  \\

Similar questions