I0 =Initial Population= 16,000
Population after 2 years = I_{2}I2 = 17640
The formula for increase or decrease in population is given by:
\begin{lgathered}I_{2}=I_{0}[1 +\frac{R}{100}]^t\\\\ 17,640= 16,000[ 1 +\frac{R}{100}]^2\end{lgathered}I2=I0[1+100R]t17,640=16,000[1+100R]2
\begin{lgathered}\frac{1764}{1600}=[ 1 +\frac{R}{100}]^2\\\\ (\frac{42}{40})^2=[ 1 +\frac{R}{100}]^2\\\\ \frac{42}{40}=1 +\frac{R}{100}\\\\ \frac{2}{40}=\frac{R}{100}\\\\ R= \frac{200}{40} \\\\ R= 5\end{lgathered}16001764=[1+100R]2(4042)2=[1+100R]24042=1+100R402=100RR=40200R=5
Rate of increase= 5 %
Answers
Answered by
0
Yes 5% is in crease in population
Similar questions